私は、matplotlib を使用して球の周りの磁場の流線をプロットしようとしていますが、うまく機能します。ただし、結果の画像は対称ではありませんが、対称である必要があります(と思います)。
これは、画像を生成するために使用されるコードです。長々と失礼しましたが、機能しないスニペットを投稿するよりはましだと思いました。また、あまりPythonicではありません。これは、Matlab から変換したためで、予想よりも簡単でした。
from __future__ import division
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Circle
def cart2spherical(x, y, z):
r = np.sqrt(x**2 + y**2 + z**2)
phi = np.arctan2(y, x)
theta = np.arccos(z/r)
if r == 0:
theta = 0
return (r, theta, phi)
def S(theta, phi):
S = np.array([[np.sin(theta)*np.cos(phi), np.cos(theta)*np.cos(phi), -np.sin(phi)],
[np.sin(theta)*np.sin(phi), np.cos(theta)*np.sin(phi), np.cos(phi)],
[np.cos(theta), -np.sin(theta), 0]])
return S
def computeB(r, theta, phi, a=1, muR=100, B0=1):
delta = (muR - 1)/(muR + 2)
if r > a:
Bspherical = B0*np.array([np.cos(theta) * (1 + 2*delta*a**3 / r**3),
np.sin(theta) * (delta*a**3 / r**3 - 1),
0])
B = np.dot(S(theta, phi), Bspherical)
else:
B = 3*B0*(muR / (muR + 2)) * np.array([0, 0, 1])
return B
Z, X = np.mgrid[-2.5:2.5:1000j, -2.5:2.5:1000j]
Bx = np.zeros(np.shape(X))
Bz = np.zeros(np.shape(X))
Babs = np.zeros(np.shape(X))
for i in range(len(X)):
for j in range(len(Z)):
r, theta, phi = cart2spherical(X[0, i], 0, Z[j, 0])
B = computeB(r, theta, phi)
Bx[i, j], Bz[i, j] = B[0], B[2]
Babs[i, j] = np.sqrt(B[0]**2 + B[1]**2 + B[2]**2)
fig=plt.figure()
ax=fig.add_subplot(111)
plt.streamplot(X, Z, Bx, Bz, color='k', linewidth=0.8*Babs, density=1.3,
minlength=0.9, arrowstyle='-')
ax.add_patch(Circle((0, 0), radius=1, facecolor='none', linewidth=2))
plt.axis('equal')
plt.axis('off')
fig.savefig('streamlines.pdf', transparent=True, bbox_inches='tight', pad_inches=0)