3

次のデータフレームがあります:

forStack
  AGE  BMI time          A         B      ID
 1  59 23.8    0     (0,75]  (4,14.9] 9000099
 2  69 29.8    0 (96.4,100]  (-Inf,0] 9000296
 3  71 22.7    0  (75,89.3]  (4,14.9] 9000622
 4  56 32.4    0     (0,75] (14.9,68] 9000798
 5  72 30.7    0     (0,75] (14.9,68] 9001104
 6  75 23.5    0 (96.4,100]     (0,4] 9001400

dput (forStack)
structure(list(AGE = c(59, 69, 71, 56, 72, 75), BMI = c(23.8, 
29.8, 22.7, 32.4, 30.7, 23.5), time = c(0, 0, 0, 0, 0, 0), A = structure(c(2L, 
5L, 3L, 2L, 2L, 5L), .Label = c("(-Inf,0]", "(0,75]", "(75,89.3]", 
"(89.3,96.4]", "(96.4,100]", "(100, Inf]"), class = "factor"), 
B = structure(c(3L, 1L, 3L, 4L, 4L, 2L), .Label = c("(-Inf,0]", 
"(0,4]", "(4,14.9]", "(14.9,68]", "(68, Inf]"), class = "factor"), 
ID = c(9000099, 9000296, 9000622, 9000798, 9001104, 9001400
)), .Names = c("AGE", "BMI", "time", "A", "B", "ID"), row.names = c(NA, 
6L), class = "data.frame")

変数ABは、四分位数を表す因子です。

   forStack$A
   [1] (0,75]     (96.4,100] (75,89.3]  (0,75]     (0,75]     (96.4,100]
   Levels: (-Inf,0] (0,75] (75,89.3] (89.3,96.4] (96.4,100] (100, Inf]

   forStack$B
   [1] (4,14.9]  (-Inf,0]  (4,14.9]  (14.9,68] (14.9,68] (0,4]    
   Levels: (-Inf,0] (0,4] (4,14.9] (14.9,68] (68, Inf]

A次のように、値を 2 レベルの因子に再コーディングしたいと思いBます。

の場合A、上位因子レベルは 0 レベル、その他のレベルは 1 レベルとして再コード化する必要があり(96.4,100]ます(100, Inf]

B最低因子水準の(-Inf,0] 場合は(0,4]、0 水準、その他の水準 - 1 水準として再コード化する必要があります。

したがって、データフレームは次のようになります。

 forStack
  AGE  BMI time          A         B      ID
 1  59 23.8    0         1         1   9000099
 2  69 29.8    0         0         0   9000296
 3  71 22.7    0         1         1   9000622
 4  56 32.4    0         1         1   9000798
 5  72 30.7    0         1         1   9001104
 6  75 23.5    0         0         0   9001400

それを行う最も効率的な方法は何ですか?事前にどうもありがとうございました

4

2 に答える 2

6

1 つのアプローチを次に示します。

within(forStack, {
  A <- as.numeric(!A %in% tail(levels(A), 2))
  B <- as.numeric(!B %in% head(levels(B), 2))
})
#   AGE  BMI time A B      ID
# 1  59 23.8    0 1 1 9000099
# 2  69 29.8    0 0 0 9000296
# 3  71 22.7    0 1 1 9000622
# 4  56 32.4    0 1 1 9000798
# 5  72 30.7    0 1 1 9001104
# 6  75 23.5    0 0 0 9001400

ここでの基本的な考え方は、headtail両方に " n" 引数があり、ベクトルまたはデータセットの「頭」と「尾」から必要な値の数を指定できるということです。(96.4,100]これにより、ベクトル Aと(100, Inf]ベクトル B の関連値を簡単に取得できます。

withinの値を動的に置き換える便利な方法data.frameです。

于 2013-04-29T05:47:54.373 に答える