偶然にも、私はこの問題について数週間考えていました。
- 数学者として、私は他の場所で提案された答えのどれにも満足していません。と
- 私が取り組んでいるアプリに対する適切な回答が必要です。
そこで、ここ数日で、コンパスで使用する方位角の値を計算する独自の方法を考え出しました。
ここで使用している数学をmath.stackexchange.com に置き、以下で使用したコードを貼り付けました。このコードは、egやへの API 呼び出しを行わずに 、生データTYPE_GRAVITY
とセンサー データから方位角とピッチを計算します。コードはおそらく改善される可能性があります。たとえば、入力が少し不安定であることが判明した場合は、ローパス フィルターを使用します。コードはメソッドを介してセンサーの精度を記録することに注意してください。したがって、方位角が不安定に見える場合は、各センサーの精度を確認する必要があります。いずれにせよ、すべての計算がこのコードで明示的に表示されているため、不安定性の問題がある場合 (センサーの精度が妥当な場合)、入力または方向ベクトルの不安定性を調べることで対処できます。TYPE_MAGNETIC_FIELD
SensorManager.getRotationMatrix(...)
SensorManager.getOrientation(...)
onAccuracyChanged(Sensor sensor, int accuracy)
m_NormGravityVector[]
、m_NormEastVector[]
またはm_NormNorthVector[]
。
この方法について誰かが私に寄せたフィードバックに非常に興味があります。デバイスが平らな面、垂直、またはその中間である限り、自分のアプリで夢のように機能することがわかりました. ただし、math.stackexchange.com の記事で述べたように、デバイスが逆さまに近くなると問題が発生します。そのような状況では、どのような動作が必要かを慎重に定義する必要があります。
import android.app.Activity;
import android.hardware.Sensor;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;
import android.hardware.SensorManager;
import android.view.Surface;
public static class OrientationSensor implements SensorEventListener {
public final static int SENSOR_UNAVAILABLE = -1;
// references to other objects
SensorManager m_sm;
SensorEventListener m_parent; // non-null if this class should call its parent after onSensorChanged(...) and onAccuracyChanged(...) notifications
Activity m_activity; // current activity for call to getWindowManager().getDefaultDisplay().getRotation()
// raw inputs from Android sensors
float m_Norm_Gravity; // length of raw gravity vector received in onSensorChanged(...). NB: should be about 10
float[] m_NormGravityVector; // Normalised gravity vector, (i.e. length of this vector is 1), which points straight up into space
float m_Norm_MagField; // length of raw magnetic field vector received in onSensorChanged(...).
float[] m_NormMagFieldValues; // Normalised magnetic field vector, (i.e. length of this vector is 1)
// accuracy specifications. SENSOR_UNAVAILABLE if unknown, otherwise SensorManager.SENSOR_STATUS_UNRELIABLE, SENSOR_STATUS_ACCURACY_LOW, SENSOR_STATUS_ACCURACY_MEDIUM or SENSOR_STATUS_ACCURACY_HIGH
int m_GravityAccuracy; // accuracy of gravity sensor
int m_MagneticFieldAccuracy; // accuracy of magnetic field sensor
// values calculated once gravity and magnetic field vectors are available
float[] m_NormEastVector; // normalised cross product of raw gravity vector with magnetic field values, points east
float[] m_NormNorthVector; // Normalised vector pointing to magnetic north
boolean m_OrientationOK; // set true if m_azimuth_radians and m_pitch_radians have successfully been calculated following a call to onSensorChanged(...)
float m_azimuth_radians; // angle of the device from magnetic north
float m_pitch_radians; // tilt angle of the device from the horizontal. m_pitch_radians = 0 if the device if flat, m_pitch_radians = Math.PI/2 means the device is upright.
float m_pitch_axis_radians; // angle which defines the axis for the rotation m_pitch_radians
public OrientationSensor(SensorManager sm, SensorEventListener parent) {
m_sm = sm;
m_parent = parent;
m_activity = null;
m_NormGravityVector = m_NormMagFieldValues = null;
m_NormEastVector = new float[3];
m_NormNorthVector = new float[3];
m_OrientationOK = false;
}
public int Register(Activity activity, int sensorSpeed) {
m_activity = activity; // current activity required for call to getWindowManager().getDefaultDisplay().getRotation()
m_NormGravityVector = new float[3];
m_NormMagFieldValues = new float[3];
m_OrientationOK = false;
int count = 0;
Sensor SensorGravity = m_sm.getDefaultSensor(Sensor.TYPE_GRAVITY);
if (SensorGravity != null) {
m_sm.registerListener(this, SensorGravity, sensorSpeed);
m_GravityAccuracy = SensorManager.SENSOR_STATUS_ACCURACY_HIGH;
count++;
} else {
m_GravityAccuracy = SENSOR_UNAVAILABLE;
}
Sensor SensorMagField = m_sm.getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD);
if (SensorMagField != null) {
m_sm.registerListener(this, SensorMagField, sensorSpeed);
m_MagneticFieldAccuracy = SensorManager.SENSOR_STATUS_ACCURACY_HIGH;
count++;
} else {
m_MagneticFieldAccuracy = SENSOR_UNAVAILABLE;
}
return count;
}
public void Unregister() {
m_activity = null;
m_NormGravityVector = m_NormMagFieldValues = null;
m_OrientationOK = false;
m_sm.unregisterListener(this);
}
@Override
public void onSensorChanged(SensorEvent evnt) {
int SensorType = evnt.sensor.getType();
switch(SensorType) {
case Sensor.TYPE_GRAVITY:
if (m_NormGravityVector == null) m_NormGravityVector = new float[3];
System.arraycopy(evnt.values, 0, m_NormGravityVector, 0, m_NormGravityVector.length);
m_Norm_Gravity = (float)Math.sqrt(m_NormGravityVector[0]*m_NormGravityVector[0] + m_NormGravityVector[1]*m_NormGravityVector[1] + m_NormGravityVector[2]*m_NormGravityVector[2]);
for(int i=0; i < m_NormGravityVector.length; i++) m_NormGravityVector[i] /= m_Norm_Gravity;
break;
case Sensor.TYPE_MAGNETIC_FIELD:
if (m_NormMagFieldValues == null) m_NormMagFieldValues = new float[3];
System.arraycopy(evnt.values, 0, m_NormMagFieldValues, 0, m_NormMagFieldValues.length);
m_Norm_MagField = (float)Math.sqrt(m_NormMagFieldValues[0]*m_NormMagFieldValues[0] + m_NormMagFieldValues[1]*m_NormMagFieldValues[1] + m_NormMagFieldValues[2]*m_NormMagFieldValues[2]);
for(int i=0; i < m_NormMagFieldValues.length; i++) m_NormMagFieldValues[i] /= m_Norm_MagField;
break;
}
if (m_NormGravityVector != null && m_NormMagFieldValues != null) {
// first calculate the horizontal vector that points due east
float East_x = m_NormMagFieldValues[1]*m_NormGravityVector[2] - m_NormMagFieldValues[2]*m_NormGravityVector[1];
float East_y = m_NormMagFieldValues[2]*m_NormGravityVector[0] - m_NormMagFieldValues[0]*m_NormGravityVector[2];
float East_z = m_NormMagFieldValues[0]*m_NormGravityVector[1] - m_NormMagFieldValues[1]*m_NormGravityVector[0];
float norm_East = (float)Math.sqrt(East_x * East_x + East_y * East_y + East_z * East_z);
if (m_Norm_Gravity * m_Norm_MagField * norm_East < 0.1f) { // Typical values are > 100.
m_OrientationOK = false; // device is close to free fall (or in space?), or close to magnetic north pole.
} else {
m_NormEastVector[0] = East_x / norm_East; m_NormEastVector[1] = East_y / norm_East; m_NormEastVector[2] = East_z / norm_East;
// next calculate the horizontal vector that points due north
float M_dot_G = (m_NormGravityVector[0] *m_NormMagFieldValues[0] + m_NormGravityVector[1]*m_NormMagFieldValues[1] + m_NormGravityVector[2]*m_NormMagFieldValues[2]);
float North_x = m_NormMagFieldValues[0] - m_NormGravityVector[0] * M_dot_G;
float North_y = m_NormMagFieldValues[1] - m_NormGravityVector[1] * M_dot_G;
float North_z = m_NormMagFieldValues[2] - m_NormGravityVector[2] * M_dot_G;
float norm_North = (float)Math.sqrt(North_x * North_x + North_y * North_y + North_z * North_z);
m_NormNorthVector[0] = North_x / norm_North; m_NormNorthVector[1] = North_y / norm_North; m_NormNorthVector[2] = North_z / norm_North;
// take account of screen rotation away from its natural rotation
int rotation = m_activity.getWindowManager().getDefaultDisplay().getRotation();
float screen_adjustment = 0;
switch(rotation) {
case Surface.ROTATION_0: screen_adjustment = 0; break;
case Surface.ROTATION_90: screen_adjustment = (float)Math.PI/2; break;
case Surface.ROTATION_180: screen_adjustment = (float)Math.PI; break;
case Surface.ROTATION_270: screen_adjustment = 3*(float)Math.PI/2; break;
}
// NB: the rotation matrix has now effectively been calculated. It consists of the three vectors m_NormEastVector[], m_NormNorthVector[] and m_NormGravityVector[]
// calculate all the required angles from the rotation matrix
// NB: see https://math.stackexchange.com/questions/381649/whats-the-best-3d-angular-co-ordinate-system-for-working-with-smartfone-apps
float sin = m_NormEastVector[1] - m_NormNorthVector[0], cos = m_NormEastVector[0] + m_NormNorthVector[1];
m_azimuth_radians = (float) (sin != 0 && cos != 0 ? Math.atan2(sin, cos) : 0);
m_pitch_radians = (float) Math.acos(m_NormGravityVector[2]);
sin = -m_NormEastVector[1] - m_NormNorthVector[0]; cos = m_NormEastVector[0] - m_NormNorthVector[1];
float aximuth_plus_two_pitch_axis_radians = (float)(sin != 0 && cos != 0 ? Math.atan2(sin, cos) : 0);
m_pitch_axis_radians = (float)(aximuth_plus_two_pitch_axis_radians - m_azimuth_radians) / 2;
m_azimuth_radians += screen_adjustment;
m_pitch_axis_radians += screen_adjustment;
m_OrientationOK = true;
}
}
if (m_parent != null) m_parent.onSensorChanged(evnt);
}
@Override
public void onAccuracyChanged(Sensor sensor, int accuracy) {
int SensorType = sensor.getType();
switch(SensorType) {
case Sensor.TYPE_GRAVITY: m_GravityAccuracy = accuracy; break;
case Sensor.TYPE_MAGNETIC_FIELD: m_MagneticFieldAccuracy = accuracy; break;
}
if (m_parent != null) m_parent.onAccuracyChanged(sensor, accuracy);
}
}