最近、 pythonでファイルを丸呑みする方法を尋ねられ、受け入れられた答えは次のようなものを提案しました:
with open('x.txt') as x: f = x.read()
ファイルを読み込んでデータのエンディアン表現を変換するにはどうすればよいですか?
たとえば、ビッグ エンディアンとしてパックされた単精度浮動小数点数の集まりである 1 GB のバイナリ ファイルがあり、それをリトル エンディアンに変換して numpy 配列にダンプしたいとします。以下は、これを達成するために私が書いた関数と、それを呼び出す実際のコードです。私struct.unpack
はエンディアン変換を使用し、を使用してすべてを高速化しようとしましたmmap
。
私の質問は、丸呑みをmmap
and で正しく使用していstruct.unpack
ますか? これを行うためのよりクリーンで高速な方法はありますか? 現在、私が持っているものはうまくいきますが、これをより良くする方法を学びたいと思っています.
前もって感謝します!
#!/usr/bin/python
from struct import unpack
import mmap
import numpy as np
def mmapChannel(arrayName, fileName, channelNo, line_count, sample_count):
"""
We need to read in the asf internal file and convert it into a numpy array.
It is stored as a single row, and is binary. Thenumber of lines (rows), samples (columns),
and channels all come from the .meta text file
Also, internal format files are packed big endian, but most systems use little endian, so we need
to make that conversion as well.
Memory mapping seemed to improve the ingestion speed a bit
"""
# memory-map the file, size 0 means whole file
# length = line_count * sample_count * arrayName.itemsize
print "\tMemory Mapping..."
with open(fileName, "rb") as f:
map = mmap.mmap(f.fileno(), 0, access=mmap.ACCESS_READ)
map.seek(channelNo*line_count*sample_count*arrayName.itemsize)
for i in xrange(line_count*sample_count):
arrayName[0, i] = unpack('>f', map.read(arrayName.itemsize) )[0]
# Same method as above, just more verbose for the maintenance programmer.
# for i in xrange(line_count*sample_count): #row
# be_float = map.read(arrayName.itemsize) # arrayName.itemsize should be 4 for float32
# le_float = unpack('>f', be_float)[0] # > for big endian, < for little endian
# arrayName[0, i]= le_float
map.close()
return arrayName
print "Initializing the Amp HH HV, and Phase HH HV arrays..."
HHamp = np.ones((1, line_count*sample_count), dtype='float32')
HHphase = np.ones((1, line_count*sample_count), dtype='float32')
HVamp = np.ones((1, line_count*sample_count), dtype='float32')
HVphase = np.ones((1, line_count*sample_count), dtype='float32')
print "Ingesting HH_Amp..."
HHamp = mmapChannel(HHamp, 'ALPSRP042301700-P1.1__A.img', 0, line_count, sample_count)
print "Ingesting HH_phase..."
HHphase = mmapChannel(HHphase, 'ALPSRP042301700-P1.1__A.img', 1, line_count, sample_count)
print "Ingesting HV_AMP..."
HVamp = mmapChannel(HVamp, 'ALPSRP042301700-P1.1__A.img', 2, line_count, sample_count)
print "Ingesting HV_phase..."
HVphase = mmapChannel(HVphase, 'ALPSRP042301700-P1.1__A.img', 3, line_count, sample_count)
print "Reshaping...."
HHamp_orig = HHamp.reshape(line_count, -1)
HHphase_orig = HHphase.reshape(line_count, -1)
HVamp_orig = HVamp.reshape(line_count, -1)
HVphase_orig = HVphase.reshape(line_count, -1)