3

NeuQuant.jsは、画像の幅と高さが 100 の倍数の場合にうまく機能します。

300x300 アニメーション GIF300×300

そうでなければ、明らかにバグがあります:

299x300 アニメーション GIF299×300

(これらはこの Web アプリで作成されました。)

バグが NeuQuant.js にあることは 90% 確信しています。jsgifomggifでそれを使用してテストを行いましたが、両方のエンコーダーに同じバグがあります。画像サイズが 100 の倍数以外の場合、写真画像 (256 色に量子化) でのみ明らかです。

ニューラル ネットワーク、色の量子化、および/または AS3 から JS への移植に関する問題を理解している場合は、ぜひご覧ください。元のポーターはプロジェクトを放棄しました。


OMGGIF を使用してワーカーに実装するコードは次のとおりです。

importScripts('omggif.js', 'NeuQuant.js'); 

var rgba2rgb = function (data) {
  var pixels = [];
  var count = 0;
  var len = data.length;
  for ( var i=0; i<len; i+=4 ) {
    pixels[count++] = data[i];
    pixels[count++] = data[i+1];
    pixels[count++] = data[i+2];
  }
  return pixels;
}

var rgb2num = function(palette) {
  var colors = [];
  var count = 0;
  var len = palette.length;
  for ( var i=0; i<len; i+=3 ) {
    colors[count++] = palette[i+2] | (palette[i+1] << 8) | (palette[i] << 16);
  }
  return colors;
}

self.onmessage = function(event) {
  var frames = event.data.frames;
  var framesLength = frames.length;
  var delay = event.data.delay / 10;

  var startTime = Date.now();

  var buffer = new Uint8Array( frames[0].width * frames[0].height * framesLength * 5 );
  var gif = new GifWriter( buffer, frames[0].width, frames[0].height, { loop: 0 } );
  // var pixels = new Uint8Array( frames[0].width * frames[0].height );

  var addFrame = function (frame) {
    var data = frame.data;

    // Make palette with NeuQuant.js
    var nqInPixels = rgba2rgb(data);
    var len = nqInPixels.length;
    var nPix = len / 3;
    var map = [];
    var nq = new NeuQuant(nqInPixels, len, 10);
    // initialize quantizer
    var paletteRGB = nq.process(); // create reduced palette
    var palette = rgb2num(paletteRGB);
    // map image pixels to new palette
    var k = 0;
    for (var j = 0; j < nPix; j++) {
      var index = nq.map(nqInPixels[k++] & 0xff, nqInPixels[k++] & 0xff, nqInPixels[k++] & 0xff);
      // usedEntry[index] = true;
      map[j] = index;
    }

    gif.addFrame( 0, 0, frame.width, frame.height, new Uint8Array( map ), { palette: new Uint32Array( palette ), delay: delay } );
  }

  // Add all frames
  for (var i = 0; i<framesLength; i++) {
    addFrame( frames[i] );
    self.postMessage({
      type: "progress", 
      data: Math.round( (i+1)/framesLength*100 ) 
    });
  }

  // Finish
  var string = '';
  for ( var i = 0, l = gif.end(); i < l; i ++ ) {
    string += String.fromCharCode( buffer[ i ] );
  }

  self.postMessage({
    type: "gif", 
    data: string,
    frameCount: framesLength,
    encodeTime: Math.round( (Date.now()-startTime)/10 ) / 100
  });
};

そしてすべてのNeuQuant.js :

/*
* NeuQuant Neural-Net Quantization Algorithm
* ------------------------------------------
* 
* Copyright (c) 1994 Anthony Dekker
* 
* NEUQUANT Neural-Net quantization algorithm by Anthony Dekker, 1994. See
* "Kohonen neural networks for optimal colour quantization" in "Network:
* Computation in Neural Systems" Vol. 5 (1994) pp 351-367. for a discussion of
* the algorithm.
* 
* Any party obtaining a copy of these files from the author, directly or
* indirectly, is granted, free of charge, a full and unrestricted irrevocable,
* world-wide, paid up, royalty-free, nonexclusive right and license to deal in
* this software and documentation files (the "Software"), including without
* limitation the rights to use, copy, modify, merge, publish, distribute,
* sublicense, and/or sell copies of the Software, and to permit persons who
* receive copies from any such party to do so, with the only requirement being
* that this copyright notice remain intact.
*/

/*
* This class handles Neural-Net quantization algorithm
* @author Kevin Weiner (original Java version - kweiner@fmsware.com)
* @author Thibault Imbert (AS3 version - bytearray.org)
* @version 0.1 AS3 implementation
*/

//import flash.utils.ByteArray;

NeuQuant = function()
{
    var exports = {};
    /*private_static*/ var netsize/*int*/ = 256; /* number of colours used */

    /* four primes near 500 - assume no image has a length so large */
    /* that it is divisible by all four primes */

    /*private_static*/ var prime1/*int*/ = 499;
    /*private_static*/ var prime2/*int*/ = 491;
    /*private_static*/ var prime3/*int*/ = 487;
    /*private_static*/ var prime4/*int*/ = 503;
    /*private_static*/ var minpicturebytes/*int*/ = (3 * prime4);

    /* minimum size for input image */
    /*
    * Program Skeleton ---------------- [select samplefac in range 1..30] [read
    * image from input file] pic = (unsigned char*) malloc(3*width*height);
    * initnet(pic,3*width*height,samplefac); learn(); unbiasnet(); [write output
    * image header, using writecolourmap(f)] inxbuild(); write output image using
    * inxsearch(b,g,r)
    */

    /*
    * Network Definitions -------------------
    */

    /*private_static*/ var maxnetpos/*int*/ = (netsize - 1);
    /*private_static*/ var netbiasshift/*int*/ = 4; /* bias for colour values */
    /*private_static*/ var ncycles/*int*/ = 100; /* no. of learning cycles */

    /* defs for freq and bias */
    /*private_static*/ var intbiasshift/*int*/ = 16; /* bias for fractions */
    /*private_static*/ var intbias/*int*/ = (1 << intbiasshift);
    /*private_static*/ var gammashift/*int*/ = 10; /* gamma = 1024 */
    /*private_static*/ var gamma/*int*/ = (1 << gammashift);
    /*private_static*/ var betashift/*int*/ = 10;
    /*private_static*/ var beta/*int*/ = (intbias >> betashift); /* beta = 1/1024 */
    /*private_static*/ var betagamma/*int*/ = (intbias << (gammashift - betashift));

    /* defs for decreasing radius factor */
    /*private_static*/ var initrad/*int*/ = (netsize >> 3); /*
                                                         * for 256 cols, radius
                                                         * starts
                                                         */

    /*private_static*/ var radiusbiasshift/*int*/ = 6; /* at 32.0 biased by 6 bits */
    /*private_static*/ var radiusbias/*int*/ = (1 << radiusbiasshift);
    /*private_static*/ var initradius/*int*/ = (initrad * radiusbias); /*
                                                                   * and
                                                                   * decreases
                                                                   * by a
                                                                   */

    /*private_static*/ var radiusdec/*int*/ = 30; /* factor of 1/30 each cycle */

    /* defs for decreasing alpha factor */
    /*private_static*/ var alphabiasshift/*int*/ = 10; /* alpha starts at 1.0 */
    /*private_static*/ var initalpha/*int*/ = (1 << alphabiasshift);
    /*private*/ var alphadec/*int*/ /* biased by 10 bits */

    /* radbias and alpharadbias used for radpower calculation */
    /*private_static*/ var radbiasshift/*int*/ = 8;
    /*private_static*/ var radbias/*int*/ = (1 << radbiasshift);
    /*private_static*/ var alpharadbshift/*int*/ = (alphabiasshift + radbiasshift);

    /*private_static*/ var alpharadbias/*int*/ = (1 << alpharadbshift);

    /*
    * Types and Global Variables --------------------------
    */

    /*private*/ var thepicture/*ByteArray*//* the input image itself */
    /*private*/ var lengthcount/*int*/; /* lengthcount = H*W*3 */
    /*private*/ var samplefac/*int*/; /* sampling factor 1..30 */

    // typedef int pixel[4]; /* BGRc */
    /*private*/ var network/*Array*/; /* the network itself - [netsize][4] */
    /*protected*/ var netindex/*Array*/ = new Array();

    /* for network lookup - really 256 */
    /*private*/ var bias/*Array*/ = new Array();

    /* bias and freq arrays for learning */
    /*private*/ var freq/*Array*/ = new Array();
    /*private*/ var radpower/*Array*/ = new Array();

    var NeuQuant = exports.NeuQuant = function NeuQuant(thepic/*ByteArray*/, len/*int*/, sample/*int*/)
    {

        var i/*int*/;
        var p/*Array*/;

        thepicture = thepic;
        lengthcount = len;
        samplefac = sample;

        network = new Array(netsize);

        for (i = 0; i < netsize; i++)
        {

            network[i] = new Array(4);
            p = network[i];
            p[0] = p[1] = p[2] = (i << (netbiasshift + 8)) / netsize;
            freq[i] = intbias / netsize; /* 1/netsize */
            bias[i] = 0;
        }

    }

    var colorMap = function colorMap()/*ByteArray*/
    {

        var map/*ByteArray*/ = [];
        var index/*Array*/ = new Array(netsize);
        for (var i/*int*/ = 0; i < netsize; i++)
          index[network[i][3]] = i;
        var k/*int*/ = 0;
        for (var l/*int*/ = 0; l < netsize; l++) {
          var j/*int*/ = index[l];
          map[k++] = (network[j][0]);
          map[k++] = (network[j][1]);
          map[k++] = (network[j][2]);
        }
        return map;

    }

    /*
   * Insertion sort of network and building of netindex[0..255] (to do after
   * unbias)
   * -------------------------------------------------------------------------------
   */

   var inxbuild = function inxbuild()/*void*/
   {

      var i/*int*/;
      var j/*int*/;
      var smallpos/*int*/;
      var smallval/*int*/;
      var p/*Array*/;
      var q/*Array*/;
      var previouscol/*int*/
      var startpos/*int*/

      previouscol = 0;
      startpos = 0;
      for (i = 0; i < netsize; i++)
      {

          p = network[i];
          smallpos = i;
          smallval = p[1]; /* index on g */
          /* find smallest in i..netsize-1 */
          for (j = i + 1; j < netsize; j++)
          {
              q = network[j];
              if (q[1] < smallval)
              { /* index on g */

                smallpos = j;
                smallval = q[1]; /* index on g */
            }
          }

          q = network[smallpos];
          /* swap p (i) and q (smallpos) entries */

          if (i != smallpos)
          {

              j = q[0];
              q[0] = p[0];
              p[0] = j;
              j = q[1];
              q[1] = p[1];
              p[1] = j;
              j = q[2];
              q[2] = p[2];
              p[2] = j;
              j = q[3];
              q[3] = p[3];
              p[3] = j;

          }

          /* smallval entry is now in position i */

          if (smallval != previouscol)

          {

            netindex[previouscol] = (startpos + i) >> 1;

            for (j = previouscol + 1; j < smallval; j++) netindex[j] = i;

            previouscol = smallval;
            startpos = i;

          }

        }

        netindex[previouscol] = (startpos + maxnetpos) >> 1;
        for (j = previouscol + 1; j < 256; j++) netindex[j] = maxnetpos; /* really 256 */

   }

   /*
   * Main Learning Loop ------------------
   */

   var learn = function learn()/*void*/ 

   {

       var i/*int*/;
       var j/*int*/;
       var b/*int*/;
       var g/*int*/
       var r/*int*/;
       var radius/*int*/;
       var rad/*int*/;
       var alpha/*int*/;
       var step/*int*/;
       var delta/*int*/;
       var samplepixels/*int*/;
       var p/*ByteArray*/;
       var pix/*int*/;
       var lim/*int*/;

       if (lengthcount < minpicturebytes) samplefac = 1;

       alphadec = 30 + ((samplefac - 1) / 3);
       p = thepicture;
       pix = 0;
       lim = lengthcount;
       samplepixels = lengthcount / (3 * samplefac);
       delta = samplepixels / ncycles;
       alpha = initalpha;
       radius = initradius;

       rad = radius >> radiusbiasshift;
       if (rad <= 1) rad = 0;

       for (i = 0; i < rad; i++) radpower[i] = alpha * (((rad * rad - i * i) * radbias) / (rad * rad));


       if (lengthcount < minpicturebytes) step = 3;

       else if ((lengthcount % prime1) != 0) step = 3 * prime1;

       else

       {

           if ((lengthcount % prime2) != 0) step = 3 * prime2;

           else

           {

               if ((lengthcount % prime3) != 0) step = 3 * prime3;

               else step = 3 * prime4;

           }

       }

       i = 0;

       while (i < samplepixels)

       {

           b = (p[pix + 0] & 0xff) << netbiasshift;
           g = (p[pix + 1] & 0xff) << netbiasshift;
           r = (p[pix + 2] & 0xff) << netbiasshift;
           j = contest(b, g, r);

           altersingle(alpha, j, b, g, r);

           if (rad != 0) alterneigh(rad, j, b, g, r); /* alter neighbours */

           pix += step;

           if (pix >= lim) pix -= lengthcount;

           i++;

           if (delta == 0) delta = 1;

           if (i % delta == 0)

           {

               alpha -= alpha / alphadec;
               radius -= radius / radiusdec;
               rad = radius >> radiusbiasshift;

               if (rad <= 1) rad = 0;

               for (j = 0; j < rad; j++) radpower[j] = alpha * (((rad * rad - j * j) * radbias) / (rad * rad));

           }

       }

   }

   /*
   ** Search for BGR values 0..255 (after net is unbiased) and return colour
   * index
   * ----------------------------------------------------------------------------
   */

   var map = exports.map = function map(b/*int*/, g/*int*/, r/*int*/)/*int*/

   {

       var i/*int*/;
       var j/*int*/;
       var dist/*int*/
       var a/*int*/;
       var bestd/*int*/;
       var p/*Array*/;
       var best/*int*/;

       bestd = 1000; /* biggest possible dist is 256*3 */
       best = -1;
       i = netindex[g]; /* index on g */
       j = i - 1; /* start at netindex[g] and work outwards */

    while ((i < netsize) || (j >= 0))

    {

        if (i < netsize)

        {

            p = network[i];

            dist = p[1] - g; /* inx key */

            if (dist >= bestd) i = netsize; /* stop iter */

            else

            {

                i++;

                if (dist < 0) dist = -dist;

                a = p[0] - b;

                if (a < 0) a = -a;

                dist += a;

                if (dist < bestd)

                {

                    a = p[2] - r;

                    if (a < 0) a = -a;

                    dist += a;

                    if (dist < bestd)

                    {

                        bestd = dist;
                        best = p[3];

                    }

                }

            }

        }

      if (j >= 0)
      {

          p = network[j];

          dist = g - p[1]; /* inx key - reverse dif */

          if (dist >= bestd) j = -1; /* stop iter */

          else 
          {

              j--;
              if (dist < 0) dist = -dist;
              a = p[0] - b;
              if (a < 0) a = -a;
              dist += a;

              if (dist < bestd)

              {

                  a = p[2] - r;
                  if (a < 0)a = -a;
                  dist += a;
                  if (dist < bestd)
                  {
                      bestd = dist;
                      best = p[3];
                  }

              }

          }

      }

    }

    return (best);

  }

  var process = exports.process = function process()/*ByteArray*/
  {

    learn();
    unbiasnet();
    inxbuild();
    return colorMap();

  }

  /*
  * Unbias network to give byte values 0..255 and record position i to prepare
  * for sort
  * -----------------------------------------------------------------------------------
  */

  var unbiasnet = function unbiasnet()/*void*/

  {

    var i/*int*/;
    var j/*int*/;

    for (i = 0; i < netsize; i++)
    {
      network[i][0] >>= netbiasshift;
      network[i][1] >>= netbiasshift;
      network[i][2] >>= netbiasshift;
      network[i][3] = i; /* record colour no */
    }

  }

  /*
  * Move adjacent neurons by precomputed alpha*(1-((i-j)^2/[r]^2)) in
  * radpower[|i-j|]
  * ---------------------------------------------------------------------------------
  */

  var alterneigh = function alterneigh(rad/*int*/, i/*int*/, b/*int*/, g/*int*/, r/*int*/)/*void*/

  {

      var j/*int*/;
      var k/*int*/;
      var lo/*int*/;
      var hi/*int*/;
      var a/*int*/;
      var m/*int*/;

      var p/*Array*/;

      lo = i - rad;
      if (lo < -1) lo = -1;

      hi = i + rad;

      if (hi > netsize) hi = netsize;

      j = i + 1;
      k = i - 1;
      m = 1;

      while ((j < hi) || (k > lo))

      {

          a = radpower[m++];

          if (j < hi)

          {

              p = network[j++];

              try {

                  p[0] -= (a * (p[0] - b)) / alpharadbias;
                  p[1] -= (a * (p[1] - g)) / alpharadbias;
                  p[2] -= (a * (p[2] - r)) / alpharadbias;

                  } catch (e/*Error*/) {} // prevents 1.3 miscompilation

            }

            if (k > lo)

            {

                p = network[k--];

                try
                {

                    p[0] -= (a * (p[0] - b)) / alpharadbias;
                    p[1] -= (a * (p[1] - g)) / alpharadbias;
                    p[2] -= (a * (p[2] - r)) / alpharadbias;

                } catch (e/*Error*/) {}

            }

      }

  }

  /*
  * Move neuron i towards biased (b,g,r) by factor alpha
  * ----------------------------------------------------
  */

  var altersingle = function altersingle(alpha/*int*/, i/*int*/, b/*int*/, g/*int*/, r/*int*/)/*void*/ 
  {

      /* alter hit neuron */
      var n/*Array*/ = network[i];
      n[0] -= (alpha * (n[0] - b)) / initalpha;
      n[1] -= (alpha * (n[1] - g)) / initalpha;
      n[2] -= (alpha * (n[2] - r)) / initalpha;

  }

  /*
  * Search for biased BGR values ----------------------------
  */

  var contest = function contest(b/*int*/, g/*int*/, r/*int*/)/*int*/
  {

      /* finds closest neuron (min dist) and updates freq */
      /* finds best neuron (min dist-bias) and returns position */
      /* for frequently chosen neurons, freq[i] is high and bias[i] is negative */
      /* bias[i] = gamma*((1/netsize)-freq[i]) */

      var i/*int*/;
      var dist/*int*/;
      var a/*int*/;
      var biasdist/*int*/;
      var betafreq/*int*/;
      var bestpos/*int*/;
      var bestbiaspos/*int*/;
      var bestd/*int*/;
      var bestbiasd/*int*/;
      var n/*Array*/;

      bestd = ~(1 << 31);
      bestbiasd = bestd;
      bestpos = -1;
      bestbiaspos = bestpos;

      for (i = 0; i < netsize; i++)

      {

          n = network[i];
          dist = n[0] - b;

          if (dist < 0) dist = -dist;

          a = n[1] - g;

          if (a < 0) a = -a;

          dist += a;

          a = n[2] - r;

          if (a < 0) a = -a;

          dist += a;

          if (dist < bestd)

          {

              bestd = dist;
              bestpos = i;

          }

          biasdist = dist - ((bias[i]) >> (intbiasshift - netbiasshift));

          if (biasdist < bestbiasd)

          {

              bestbiasd = biasdist;
              bestbiaspos = i;

          }

          betafreq = (freq[i] >> betashift);
          freq[i] -= betafreq;
          bias[i] += (betafreq << gammashift);

      }

      freq[bestpos] += beta;
      bias[bestpos] -= betagamma;
      return (bestbiaspos);

  }

  NeuQuant.apply(this, arguments);
  return exports;
}
4

2 に答える 2

9

JavaScript コードは、C が演算の結果を 10 進数で切り捨ててから整数変数に代入することを無視しているようです。そう、それint i = 5 / 2;2C 向けvar i = 5 / 2;ですが2.5、JavaScript 向けです。

と言い、次の行を変更します。

delta = samplepixels / ncycles;

に:

delta = (samplepixels / ncycles) | 0;

これで問題は解決しますが、この変更により、考えられるすべての整数変換の問題が解決されるのか、質問で明らかになった問題のみが解決されるのかはわかりません。

ビットごとの OR 演算子を使用して結果を切り捨てたことに注意してください。ビット単位の演算子はオペランドを 32 ビットの整数として扱うため、これは JavaScript で数値を切り捨てる古典的な方法です。

于 2013-05-11T23:44:45.783 に答える