答えが見つかったと思います。トリックは、サブツリーをリストの上下に移動して、ローテーション中に有効なノードを上書きしないようにすることです。
void shiftUp(int indx, int towards) {
if (indx >= size || nodes[indx].key == NULL) {
return;
}
nodes[towards] = nodes[indx];
nodes[indx].key = NULL;
shiftUp(lChild(indx), lChild(towards));
shiftUp(rChild(indx), rChild(towards));
}
void shiftDown(int indx, int towards) {
if (indx >= size || nodes[indx].key == NULL) {
return;
}
// increase size so we can finish shifting down
while (towards >= size) { // while in the case we don't make it big enough
enlarge();
}
shiftDown(lChild(indx), lChild(towards));
shiftDown(rChild(indx), rChild(towards));
nodes[towards] = nodes[indx];
nodes[indx].key = NULL;
}
ご覧のとおり、これは NULL (これで -1 として定義されている) ノードまで各サブツリーを再帰的に探索し、各要素を 1 つずつ上下にコピーすることによって行われます。
これにより、このウィキペディア Tree_Rebalancing.gifに従って名前が付けられた 4 種類の回転を定義できます。
void rotateRight(int rootIndx) {
int pivotIndx = lChild(rootIndx);
// shift the roots right subtree down to the right
shiftDown(rChild(rootIndx), rChild(rChild(rootIndx)));
nodes[rChild(rootIndx)] = nodes[rootIndx]; // move root too
// move the pivots right child to the roots right child's left child
shiftDown(rChild(pivotIndx), lChild(rChild(rootIndx)));
// move the pivot up to the root
shiftUp(pivotIndx, rootIndx);
// adjust balances of nodes in their new positions
nodes[rootIndx].balance--; // old pivot
nodes[rChild(rootIndx)].balance = (short)(-nodes[rootIndx].balance); // old root
}
void rotateLeft(int rootIndx) {
int pivotIndx = rChild(rootIndx);
// Shift the roots left subtree down to the left
shiftDown(lChild(rootIndx), lChild(lChild(rootIndx)));
nodes[lChild(rootIndx)] = nodes[rootIndx]; // move root too
// move the pivots left child to the roots left child's right child
shiftDown(lChild(pivotIndx), rChild(lChild(rootIndx)));
// move the pivot up to the root
shiftUp(pivotIndx, rootIndx);
// adjust balances of nodes in their new positions
nodes[rootIndx].balance++; // old pivot
nodes[lChild(rootIndx)].balance = (short)(-nodes[rootIndx].balance); // old root
}
// Where rootIndx is the highest point in the rotating tree
// not the root of the first Left rotation
void rotateLeftRight(int rootIndx) {
int newRootIndx = rChild(lChild(rootIndx));
// shift the root's right subtree down to the right
shiftDown(rChild(rootIndx), rChild(rChild(rootIndx)));
nodes[rChild(rootIndx)] = nodes[rootIndx];
// move the new roots right child to the roots right child's left child
shiftUp(rChild(newRootIndx), lChild(rChild(rootIndx)));
// move the new root node into the root node
nodes[rootIndx] = nodes[newRootIndx];
nodes[newRootIndx].key = NULL;
// shift up to where the new root was, it's left child
shiftUp(lChild(newRootIndx), newRootIndx);
// adjust balances of nodes in their new positions
if (nodes[rootIndx].balance == -1) { // new root
nodes[rChild(rootIndx)].balance = 0; // old root
nodes[lChild(rootIndx)].balance = 1; // left from old root
} else if (nodes[rootIndx].balance == 0) {
nodes[rChild(rootIndx)].balance = 0;
nodes[lChild(rootIndx)].balance = 0;
} else {
nodes[rChild(rootIndx)].balance = -1;
nodes[lChild(rootIndx)].balance = 0;
}
nodes[rootIndx].balance = 0;
}
// Where rootIndx is the highest point in the rotating tree
// not the root of the first Left rotation
void rotateRightLeft(int rootIndx) {
int newRootIndx = lChild(rChild(rootIndx));
// shift the root's left subtree down to the left
shiftDown(lChild(rootIndx), lChild(lChild(rootIndx)));
nodes[lChild(rootIndx)] = nodes[rootIndx];
// move the new roots left child to the roots left child's right child
shiftUp(lChild(newRootIndx), rChild(lChild(rootIndx)));
// move the new root node into the root node
nodes[rootIndx] = nodes[newRootIndx];
nodes[newRootIndx].key = NULL;
// shift up to where the new root was it's right child
shiftUp(rChild(newRootIndx), newRootIndx);
// adjust balances of nodes in their new positions
if (nodes[rootIndx].balance == 1) { // new root
nodes[lChild(rootIndx)].balance = 0; // old root
nodes[rChild(rootIndx)].balance = -1; // right from old root
} else if (nodes[rootIndx].balance == 0) {
nodes[lChild(rootIndx)].balance = 0;
nodes[rChild(rootIndx)].balance = 0;
} else {
nodes[lChild(rootIndx)].balance = 1;
nodes[rChild(rootIndx)].balance = 0;
}
nodes[rootIndx].balance = 0;
}
シフトによってノードが上書きされる場合は、単一のノードをコピーするだけであることに注意してください
各ノードで高さの差を取得するのは非常にコストがかかるため、効率については、各ノードにバランスを格納することが必須です。
int getHeight(int indx) {
if (indx >= size || nodes[indx].key == NULL) {
return 0;
} else {
return max(getHeight(lChild(indx)) + 1, getHeight(rChild(indx)) + 1);
}
}
これを行うには、リストを変更するときに影響を受けるノードでバランスを更新する必要がありますが、これは厳密に必要なケースのみを更新することである程度効率的になります. 削除の場合、この調整は
// requires non null node index and a balance factor baised off whitch child of it's parent it is or 0
private void deleteNode(int i, short balance) {
int lChildIndx = lChild(i);
int rChildIndx = rChild(i);
count--;
if (nodes[lChildIndx].key == NULL) {
if (nodes[rChildIndx].key == NULL) {
// root or leaf
nodes[i].key = NULL;
if (i != 0) {
deleteBalance(parent(i), balance);
}
} else {
shiftUp(rChildIndx, i);
deleteBalance(i, 0);
}
} else if (nodes[rChildIndx].key == NULL) {
shiftUp(lChildIndx, i);
deleteBalance(i, 0);
} else {
int successorIndx = rChildIndx;
// replace node with smallest child in the right subtree
if (nodes[lChild(successorIndx)].key == NULL) {
nodes[successorIndx].balance = nodes[i].balance;
shiftUp(successorIndx, i);
deleteBalance(successorIndx, 1);
} else {
int tempLeft;
while ((tempLeft = lChild(successorIndx)) != NULL) {
successorIndx = tempLeft;
}
nodes[successorIndx].balance = nodes[i].balance;
nodes[i] = nodes[successorIndx];
shiftUp(rChild(successorIndx), successorIndx);
deleteBalance(parent(successorIndx), -1);
}
}
}
同様に挿入の場合、これは
void insertBalance(int pviotIndx, short balance) {
while (pviotIndx != NULL) {
balance = (nodes[pviotIndx].balance += balance);
if (balance == 0) {
return;
} else if (balance == 2) {
if (nodes[lChild(pviotIndx)].balance == 1) {
rotateRight(pviotIndx);
} else {
rotateLeftRight(pviotIndx);
}
return;
} else if (balance == -2) {
if (nodes[rChild(pviotIndx)].balance == -1) {
rotateLeft(pviotIndx);
} else {
rotateRightLeft(pviotIndx);
}
return;
}
int p = parent(pviotIndx);
if (p != NULL) {
balance = lChild(p) == pviotIndx ? (short)1 : (short)-1;
}
pviotIndx = p;
}
}
ご覧のとおり、これは単純な「ノード」の配列を使用するだけで、gitHub array-avl-treeと最適化とバランシング (コメントに投稿するリンク) を指定して C コードから変換しましたが、リスト
最後に、私は AVL ツリーまたは最適な実装について最小限の知識しか持っていないので、これがバグがない、または最も効率的であるとは主張しませんが、少なくとも私の目的のためには予備テストに合格しています。