最初の 30,000 秒間、状態変数の 1 つを同じ初期値から開始する ODE のシステムを解きたいと考えています。その 30,000 秒後、その状態変数の初期値を別の値に変更し、残りの時間についてシステムをシミュレートしたいと考えています。これが私のコードです:
def ode_rhs(y, t):
ydot[0] = -p[7]*y[0]*y[1] + p[8]*y[8] + p[9]*y[8]
ydot[1] = -p[7]*y[0]*y[1] + p[8]*y[8]
ydot[2] = -p[10]*y[2]*y[3] + p[11]*y[9] + p[12]*y[9]
ydot[3] = -p[13]*y[3]*y[6] + p[14]*y[10] + p[15]*y[10] - p[10]*y[2]*y[3] + p[11]*y[9] + p[9]*y[8] - p[21]*y[3]
ydot[4] = -p[19]*y[4]*y[5] - p[16]*y[4]*y[5] + p[17]*y[11] - p[23]*y[4] + y[7]*p[20]
ydot[5] = -p[19]*y[4]*y[5] + p[15]*y[10] - p[16]*y[4]*y[5] + p[17]*y[11] + p[18]*y[11] + p[12]*y[9] - p[22]*y[5]
ydot[6] = -p[13]*y[3]*y[6] + p[14]*y[10] - p[22]*y[6] - p[25]*y[6] - p[23]*y[6]
ydot[7] = 0
ydot[8] = p[7]*y[0]*y[1] - p[8]*y[8] - p[9]*y[8]
ydot[9] = p[10]*y[2]*y[3] - p[11]*y[9] - p[12]*y[9] - p[21]*y[9]
ydot[10] = p[13]*y[3]*y[6] - p[14]*y[10] - p[15]*y[10] - p[22]*y[10] - p[21]*y[10] - p[23]*y[10]
ydot[11] = p[19]*y[4]*y[5] + p[16]*y[4]*y[5] - p[17]*y[11] - p[18]*y[11] - p[22]*y[11] - p[23]*y[11]
ydot[12] = p[22]*y[10] + p[22]*y[11] + p[22]*y[5] + p[22]*y[6] + p[21]*y[10] + p[21]*y[3] + p[21]*y[9] + p[24]*y[13] + p[25]*y[6] + p[23]*y[10] + p[23]*y[11] + p[23]*y[4] + p[23]*y[6]
ydot[13] = p[15]*y[10] + p[18]*y[11] - p[24]*y[13]
return ydot
pysb.bng.generate_equations(model)
alias_model_components()
p = np.array([k.value for k in model.parameters])
ydot = np.zeros(len(model.odes))
y0 = np.zeros(len(model.odes))
y0[0:7] = p[0:7]
t = np.linspace(0.0,1000000.0,100000)
r = odeint(ode_rhs,y0,t)
つまり、odeint
最初の 30,000 秒間、 が呼び出されるたびに y0[1] を同じ値 (100) に設定したいと考えています。システムに信号を入力する前に、システムを一定時間平衡化させようとしています。if t < 30000: y0[1] = 100
関数の最初の行のようなことを考えましたode_rhs()
が、うまくいくかどうかはわかりません。