最初の比較的大きな CUDA プロジェクトを、機械学習の目的で勾配降下最適化としてコーディングします。プロジェクトで使用するためのショートカットになる可能性のある CUDA のいくつかの便利なネイティブ関数について、群衆の知恵から利益を得たいと思います。アイデア/提案はありますか?
質問する
4309 次
1 に答える
12
勾配降下(AKA最急降下) は、現在の点でF(x)
の勾配の負の値に比例するステップを踏むことによって、多変量関数の極小値を見つけることを目的としています。F(x)
更新ルールは次のとおりです。
ここで、ステップ サイズ gamma_n
はステップごとに変更でき、たとえばライン検索によって決定できます。
上記の更新ルールを CUDA に実装するのは非常に簡単です。以下に、Rosenbrock 関数を最適化するコスト関数として使用し、分析的勾配を活用し、反復によるステップ サイズの定数値 (すなわちgamma_n = gamma
) を考慮した完全な例を提供します。およびファイルはOrangeOwlSolutions/CUDA_UtilitiesUtilities.cu
で管理されており、ここでは省略されています。この例では、CPU と GPU のアプローチを実装しています。Utilities.cuh
**kernel.cu**
#include <stdio.h>
#include <float.h>
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include "GradientDescentCPU.h"
#include "GradientDescentGPU.cuh"
#include "Utilities.cuh"
/********/
/* MAIN */
/********/
int main()
{
/********************/
/* INPUT PARAMETERS */
/********************/
// --- Number of unknowns
const int M = 5;
// --- Starting point
float *h_x0 = (float*)malloc(M * sizeof(float));
for (int i=0; i<M; i++) h_x0[i] = 1.2f;
// --- Termination tolerance
const float tol = 1.e-6;
// --- Maximum number of allowed iterations
const int maxiter = 10000;
// --- Step size
const float alpha = 0.001f;
// --- Derivative step
const float h = 0.0001f;
// --- Minimum allowed perturbations
const float dxmin = 1e-5;
/*********************/
/* OUTPUT PARAMETERS */
/*********************/
// --- Optimal point
float* h_xopt = (float*)malloc(M * sizeof(float));
for (int i=0; i<M; i++) h_xopt[i] = 0.f;
// --- Optimal functional
float fopt = 0.f;
// --- Number of performed iterations
int niter = 0;
// --- Gradient norm at optimal point
float gnorm = 0.f;
// --- Distance between last and penultimate solutions found
float dx = 0.f;
/***************************/
/* OPTIMIZATION - CPU CASE */
/***************************/
GradientDescentCPU(h_x0, tol, maxiter, alpha, h, dxmin, M, h_xopt, &fopt, &niter, &gnorm, &dx);
printf("Solution found - CPU case:\n");
printf("fopt = %f; niter = %i; gnorm = %f; dx = %f\n", fopt, niter, gnorm, dx);
printf("\n\n");
#ifdef VERBOSE
printf("Found minimum - CPU case:\n");
for (int i=0; i<M; i++) printf("i = %i; h_xopt = %f\n", i, h_xopt[i]);
printf("\n\n");
#endif
/***************************/
/* OPTIMIZATION - GPU CASE */
/***************************/
// --- Starting point
float *d_x0; gpuErrchk(cudaMalloc((void**)&d_x0, M * sizeof(float)));
gpuErrchk(cudaMemcpy(d_x0, h_x0, M * sizeof(float), cudaMemcpyHostToDevice));
// --- Optimal point
float *d_xopt; gpuErrchk(cudaMalloc((void**)&d_xopt, M * sizeof(float)));
GradientDescentGPU(d_x0, tol, maxiter, alpha, h, dxmin, M, d_xopt, &fopt, &niter, &gnorm, &dx);
printf("Solution found - GPU case:\n");
printf("fopt = %f; niter = %i; gnorm = %f; dx = %f\n", fopt, niter, gnorm, dx);
printf("\n\n");
#ifdef VERBOSE
gpuErrchk(cudaMemcpy(h_xopt, d_xopt, M * sizeof(float), cudaMemcpyDeviceToHost));
printf("Found minimum - GPU case:\n");
for (int i=0; i<M; i++) printf("i = %i; h_xopt = %f\n", i, h_xopt[i]);
printf("\n\n");
#endif
return 0;
}
GradientDescentCPU.cu
#include <stdlib.h>
#include <math.h>
#include <float.h>
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include "GradientDescentGPU.cuh"
/*******************************/
/* GRADIENT DESCENT - CPU CASE */
/*******************************/
// --- Version using finite differences
//void CostFunctionGradientCPU(float * __restrict h_x, float * __restrict h_g, const float h, const int M) {
//
// for (int i=0; i<M; i++) {
// h_x[i] = h_x[i] + h / 2.f;
// h_g[i] = CostFunction(h_x, M);
// h_x[i] = h_x[i] - h;
// h_g[i] = (h_g[i] - CostFunction(h_x, M)) / (2.f * h);
// h_x[i] = h_x[i] + h / 2.f;
// }
//}
// --- Version using analytical gradient (Rosenbrock function)
void CostFunctionGradientCPU(float * __restrict h_x, float * __restrict h_g, const float h, const int M) {
h_g[0] = -400.f * (h_x[1] - h_x[0] * h_x[0]) * h_x[0] + 2.f * (h_x[0] - 1.f);
for (int i=1; i<M-1; i++) {
h_g[i] = -400.f * h_x[i] * (h_x[i+1] - h_x[i] * h_x[i]) + 2.f * (h_x[i] - 1.f) + 200.f * (h_x[i] - h_x[i-1] * h_x[i-1]);
}
h_g[M-1] = 200.f * (h_x[M-1] - h_x[M-2] * h_x[M-2]);
}
/********/
/* NORM */
/********/
float normCPU(const float * __restrict h_x, const int M) {
float sum = 0.f;
for(int i=0; i<M; i++) sum = sum + h_x[i] * h_x[i];
return sqrt(sum);
}
/****************************************/
/* GRADIENT DESCENT FUNCTION - CPU CASE */
/****************************************/
// x0 - Starting point
// tol - Termination tolerance
// maxiter - Maximum number of allowed iterations
// alpha - Step size
// dxmin - Minimum allowed perturbations
void GradientDescentCPU(const float * __restrict h_x0, const float tol, const int maxiter, const float alpha, const float h, const float dxmin, const int M,
float * __restrict h_xopt, float *fopt, int *niter, float *gnorm, float *dx) {
// --- Initialize gradient norm, optimization vector, iteration counter, perturbation
*gnorm = FLT_MAX;
float *h_x = (float *)malloc(M * sizeof(float));
for (int i=0; i<M; i++) h_x[i] = h_x0[i];
*niter = 0;
*dx = FLT_MAX;
// --- Allocating space for the gradient, for the new actual solution and for the difference between actual and old solutions
float *h_g = (float *)malloc(M * sizeof(float));
float *h_xnew = (float *)malloc(M * sizeof(float));
float *h_xdiff = (float *)malloc(M * sizeof(float));
// --- Gradient Descent iterations
while ((*gnorm >= tol) && (*niter <= maxiter) && (*dx >= dxmin)) {
// --- Calculate gradient
CostFunctionGradientCPU(h_x, h_g, h, M);
*gnorm = normCPU(h_g, M);
// --- Take step:
for (int i=0; i<M; i++) h_xnew[i] = h_x[i] - alpha * h_g[i];
// --- Update termination metrics
*niter = *niter + 1;
for (int i=0; i<M; i++) h_xdiff[i] = h_xnew[i] - h_x[i];
*dx = normCPU(h_xdiff, M);
for (int i=0; i<M; i++) h_x[i] = h_xnew[i];
}
for (int i=0; i<M; i++) h_xopt[i] = h_x[i];
*fopt = CostFunction(h_xopt, M);
*niter = *niter - 1;
}
GradientDescentCPU.h
#ifndef GRADIENT_DESCENT_CPU
#define GRADIENT_DESCENT_CPU
void GradientDescentCPU(const float * __restrict, const float, const int, const float, const float, const float, const int,
float * __restrict, float *, int *, float *, float *);
#endif
GradientDescentGPU.cu
#include <thrust\device_ptr.h>
#include <thrust\inner_product.h>
#include "Utilities.cuh"
#define BLOCK_SIZE 256
//#define VERBOSE
//#define DEBUG
/***********************************/
/* COST FUNCTION - CPU & GPU CASES */
/***********************************/
__host__ __device__ float CostFunction(const float * __restrict h_x, const int M) {
// --- Rosenbrock function
float sum = 0.f;
for (int i=0; i<M-1; i++) {
float temp1 = (h_x[i+1] - h_x[i] * h_x[i]);
float temp2 = (h_x[i] - 1.f);
sum = sum + 100.f * temp1 * temp1 + temp2 * temp2;
}
return sum;
}
/*******************************/
/* GRADIENT DESCENT - GPU CASE */
/*******************************/
// --- Version using finite differences
//__device__ void CostFunctionGradientGPU(float * __restrict d_x, float * __restrict d_g, const float h, const int tid, const int M) {
//
// int test1, test2;
// float h_test1_plus, h_test1_minus, h_test2_plus, h_test2_minus, temp1_plus, temp1_minus, temp2_plus, temp2_minus;
//
// // --- Rosenbrock function
// float sum_plus = 0.f, sum_minus = 0.f;
// for (int i=0; i<M-1; i++) {
// h_test1_plus = d_x[i] + (h / 2.f) * (tid == i);
// h_test1_minus = d_x[i] - (h / 2.f) * (tid == i);
// h_test2_plus = d_x[i + 1] + (h / 2.f) * (tid == (i + 1));
// h_test2_minus = d_x[i + 1] - (h / 2.f) * (tid == (i + 1));
// temp1_plus = (h_test2_plus - h_test1_plus * h_test1_plus);
// temp2_plus = (h_test1_plus - 1.f);
// temp1_minus = (h_test2_minus - h_test1_minus * h_test1_minus);
// temp2_minus = (h_test1_minus - 1.f);
// sum_plus = sum_plus + 100.f * temp1_plus * temp1_plus + temp2_plus * temp2_plus;
// sum_minus = sum_minus + 100.f * temp1_minus * temp1_minus + temp2_minus * temp2_minus;
// }
// d_g[tid] = (sum_plus - sum_minus) / (2.f * h);
//}
// --- Version using analytical gradient (Rosenbrock function)
__device__ void CostFunctionGradientGPU(float * __restrict d_x, float * __restrict d_g, const float h, const int tid, const int M) {
if (tid == 0) d_g[0] = -400.f * (d_x[1] - d_x[0] * d_x[0]) * d_x[0] + 2.f * (d_x[0] - 1.f);
else if (tid == M-1) d_g[M-1] = 200.f * (d_x[M-1] - d_x[M-2] * d_x[M-2]);
else {
for (int i=1; i<M-1; i++) {
d_g[i] = -400.f * d_x[i] * (d_x[i+1] - d_x[i] * d_x[i]) + 2.f * (d_x[i] - 1.f) + 200.f * (d_x[i] - d_x[i-1] * d_x[i-1]);
}
}
}
/*******************/
/* STEP - GPU CASE */
/*******************/
__global__ void StepGPU(float * __restrict d_x, float * __restrict d_xnew, float * __restrict d_xdiff, float * __restrict d_g, const float alpha, const float h, const int M) {
const int tid = threadIdx.x + blockIdx.x * blockDim.x;
if (tid < M) {
// --- Calculate gradient
CostFunctionGradientGPU(d_x, d_g, h, tid, M);
// --- Take step
d_xnew[tid] = d_x[tid] - alpha * d_g[tid];
// --- Update termination metrics
d_xdiff[tid] = d_xnew[tid] - d_x[tid];
// --- Update current solution
d_x[tid] = d_xnew[tid];
}
}
/***********************************/
/* COST FUNCTION STRUCT - GPU CASE */
/***********************************/
// --- Rosenbrock function struct for thrust reduction
struct CostFunctionStructGPU{
template <typename Tuple>
__host__ __device__ float operator()(Tuple a) {
float temp1 = (thrust::get<1>(a) - thrust::get<0>(a) * thrust::get<0>(a));
float temp2 = (thrust::get<0>(a) - 1.f);
return 100.f * temp1 * temp1 + temp2 * temp2;
}
};
/****************************************/
/* GRADIENT DESCENT FUNCTION - GPU CASE */
/****************************************/
// x0 - Starting point
// tol - Termination tolerance
// maxiter - Maximum number of allowed iterations
// alpha - Step size
// dxmin - Minimum allowed perturbations
void GradientDescentGPU(const float * __restrict__ d_x0, const float tol, const int maxiter, const float alpha, const float h,
const float dxmin, const int M, float * __restrict__ d_xopt, float *fopt, int *niter, float *gnorm, float *dx) {
thrust::device_ptr<float> dev_ptr_xopt = thrust::device_pointer_cast(d_xopt);
// --- Initialize gradient norm, optimization vector, iteration counter, perturbation
*gnorm = FLT_MAX;
float *d_x; gpuErrchk(cudaMalloc((void**)&d_x, M * sizeof(float)));
gpuErrchk(cudaMemcpy(d_x, d_x0, M * sizeof(float), cudaMemcpyDeviceToDevice));
*niter = 0;
*dx = FLT_MAX;
// --- Allocating space for the gradient, for the new actual solution and for the difference between actual and old solutions
float *d_g; gpuErrchk(cudaMalloc((void**)&d_g, M * sizeof(float))); thrust::device_ptr<float> dev_ptr_g = thrust::device_pointer_cast(d_g);
float *d_xnew; gpuErrchk(cudaMalloc((void**)&d_xnew, M * sizeof(float)));
float *d_xdiff; gpuErrchk(cudaMalloc((void**)&d_xdiff, M * sizeof(float))); thrust::device_ptr<float> dev_ptr_xdiff = thrust::device_pointer_cast(d_xdiff);
// --- Gradient Descent iterations
while ((*gnorm >= tol) && (*niter <= maxiter) && (*dx >= dxmin)) {
// --- Iteration step
StepGPU<<<iDivUp(M, BLOCK_SIZE), BLOCK_SIZE>>>(d_x, d_xnew, d_xdiff, d_g, alpha, h, M);
#ifdef DEBUG
gpuErrchk(cudaPeekAtLastError());
gpuErrchk(cudaDeviceSynchronize());
#endif
*gnorm = sqrt(thrust::inner_product(dev_ptr_g, dev_ptr_g + M, dev_ptr_g, 0.0f));
*dx = sqrt(thrust::inner_product(dev_ptr_xdiff, dev_ptr_xdiff + M, dev_ptr_xdiff, 0.0f));
*niter = *niter + 1;
}
gpuErrchk(cudaMemcpy(d_xopt, d_x, M * sizeof(float), cudaMemcpyDeviceToDevice));
// --- Functional calculation
*fopt = thrust::transform_reduce(thrust::make_zip_iterator(thrust::make_tuple(dev_ptr_xopt, dev_ptr_xopt + 1)), thrust::make_zip_iterator(thrust::make_tuple(dev_ptr_xopt + M - 1, dev_ptr_xopt + M)), CostFunctionStructGPU(), 0.0f, thrust::plus<float>());
*niter = *niter - 1;
}
GradientDescentGPU.cuh
#ifndef GRADIENT_DESCENT_GPU
#define GRADIENT_DESCENT_GPU
void GradientDescentGPU(const float * __restrict__, const float, const int, const float, const float, const float, const int,
float * __restrict__, float *, int *, float *, float *);
__host__ __device__ float CostFunction(const float * __restrict, const int);
#endif
于 2015-01-12T21:07:42.977 に答える