乗算代入データ (Amelia で作成) でマルチレベル モデルを実行しようとしています。サンプルは、グループ = 24、N = 150 のクラスター化されたサンプルに基づいています。
library("ZeligMultilevel")
ML.model.0 <- zelig(dv~1 + tag(1|group), model="ls.mixed",
data=a.out$imputations)
summary(ML.model.0)
このコードは、次のエラー コードを生成します。
Error in object[[1]]$result$call :
$ operator not defined for this S4 class
OLS 回帰を実行すると、次のように機能します。
model.0 <- zelig(dv~1, model="ls", data=a.out$imputations)
m.0 <- coef(summary(model.0))
print(m.0, digits = 2)
Value Std. Error t-stat p-value
[1,] 45 0.34 130 2.6e-285
実例を提供させていただきます。
require(Zelig)
require(Amelia)
require(ZeligMultilevel)
data(freetrade)
length(freetrade$country) #grouping variable
#Imputation of missing data
a.out <- amelia(freetrade, m=5, ts="year", cs="country")
# Models: (1) OLS; (2) multi-level
model.0 <- zelig(polity~1, model="ls", data=a.out$imputations)
m.0 <- coef(summary(model.0))
print(m.0, digits = 2)
ML.model.0 <- zelig(polity~1 + tag(1|country), model="ls.mixed", data=a.out$imputations)
summary(ML.model.0)
問題は、Zelig が Amelia の mi クラスとどのようにやり取りするかにあると思います。したがって、代替の R パッケージである lme4 に目を向けました。
require(lme4)
write.amelia(obj=a.out, file.stem="inmi", format="csv", na="NA")
diff <-list(5) # a list to store each model, 5 is the number of the imputed datasets
for (i in 1:5) {
file.name <- paste("inmi", 5 ,".csv",sep="")
data.to.use <- read.csv(file.name)
diff[[5]] <- lmer(polity ~ 1 + (1 | country),
data = data.to.use)}
diff
結果は次のとおりです。
[[1]]
[1] 5
[[2]]
NULL
[[3]]
NULL
[[4]]
NULL
[[5]]
Linear mixed model fit by REML
Formula: polity ~ 1 + (1 | country)
Data: data.to.use
AIC BIC logLik deviance REMLdev
1006 1015 -499.9 1002 999.9
Random effects:
Groups Name Variance Std.Dev.
country (Intercept) 14.609 3.8222
Residual 17.839 4.2236
Number of obs: 171, groups: country, 9
Fixed effects:
Estimate Std. Error t value
(Intercept) 2.878 1.314 2.19
などで置き換えdiff[[5]]
てもdiff[[4]]
、結果は同じままdiff[[3]]
です。それでも、これが実際に結合されたデータセットの結果なのか、1 つの帰属データセットの結果なのか疑問に思っています。何かご意見は?ありがとう!