サンプルの藻類データを使用して、データ マイニングをもう少し理解します。次のコマンドを使用しました。
> data(algae)
> algae <- algae[-manyNAs(algae),]
> clean.algae <-knnImputation(algae, k = 10)
> lm.a1 <- lm(a1 ~ ., data = clean.algae[, 1:12])
> summary(lm.a1)
その後、以下の結果を受け取りましたが、これが何を意味するのかを説明する適切なドキュメント、特に Std を見つけることができません。エラー、t 値および Pr. 誰か光を当ててください。最も重要なことは、モデルが適切な予測データを提供しているかどうかを確認するために、どの変数を確認する必要があるかということです。
Call:
lm(formula = a1 ~ ., data = clean.algae[, 1:12])
Residuals:
Min 1Q Median 3Q Max
-37.679 -11.893 -2.567 7.410 62.190
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 42.942055 24.010879 1.788 0.07537 .
seasonspring 3.726978 4.137741 0.901 0.36892
seasonsummer 0.747597 4.020711 0.186 0.85270
seasonwinter 3.692955 3.865391 0.955 0.34065
sizemedium 3.263728 3.802051 0.858 0.39179
sizesmall 9.682140 4.179971 2.316 0.02166 *
speedlow 3.922084 4.706315 0.833 0.40573
speedmedium 0.246764 3.241874 0.076 0.93941
mxPH -3.589118 2.703528 -1.328 0.18598
mnO2 1.052636 0.705018 1.493 0.13715
Cl -0.040172 0.033661 -1.193 0.23426
NO3 -1.511235 0.551339 -2.741 0.00674 **
NH4 0.001634 0.001003 1.628 0.10516
oPO4 -0.005435 0.039884 -0.136 0.89177
PO4 -0.052241 0.030755 -1.699 0.09109 .
Chla -0.088022 0.079998 -1.100 0.27265
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 17.65 on 182 degrees of freedom
Multiple R-squared: 0.3731, Adjusted R-squared: 0.3215
F-statistic: 7.223 on 15 and 182 DF, p-value: 2.444e-12