ある座標系から別の座標系への最適な変換を表す四元数は、このホワイト ペーパーで説明されている方法で計算できます。
ポール J. ベスルとニール D. マッケイ「3D 形状の登録方法」、センサー フュージョン IV: コントロール パラダイムとデータ構造、586 (1992 年 4 月 30 日)。http://dx.doi.org/10.1117/12.57955
この論文はオープン アクセスではありませんが、Python の実装を紹介できます。
def get_quaternion(lst1,lst2,matchlist=None):
if not matchlist:
matchlist=range(len(lst1))
M=np.matrix([[0,0,0],[0,0,0],[0,0,0]])
for i,coord1 in enumerate(lst1):
x=np.matrix(np.outer(coord1,lst2[matchlist[i]]))
M=M+x
N11=float(M[0][:,0]+M[1][:,1]+M[2][:,2])
N22=float(M[0][:,0]-M[1][:,1]-M[2][:,2])
N33=float(-M[0][:,0]+M[1][:,1]-M[2][:,2])
N44=float(-M[0][:,0]-M[1][:,1]+M[2][:,2])
N12=float(M[1][:,2]-M[2][:,1])
N13=float(M[2][:,0]-M[0][:,2])
N14=float(M[0][:,1]-M[1][:,0])
N21=float(N12)
N23=float(M[0][:,1]+M[1][:,0])
N24=float(M[2][:,0]+M[0][:,2])
N31=float(N13)
N32=float(N23)
N34=float(M[1][:,2]+M[2][:,1])
N41=float(N14)
N42=float(N24)
N43=float(N34)
N=np.matrix([[N11,N12,N13,N14],\
[N21,N22,N23,N24],\
[N31,N32,N33,N34],\
[N41,N42,N43,N44]])
values,vectors=np.linalg.eig(N)
w=list(values)
mw=max(w)
quat= vectors[:,w.index(mw)]
quat=np.array(quat).reshape(-1,).tolist()
return quat
この関数は、探していた四元数を返します。引数 lst1 と lst2 は、すべての配列が 3D ベクトルを表す numpy.arrays のリストです。両方のリストの長さが 3 である (直交単位ベクトルを含む) 場合、クォータニオンは正確な変換である必要があります。より長いリストを指定すると、両方のポイント セットの差を最小にするクォータニオンが得られます。オプションの matchlist 引数は、lst2 のどの点を lst1 のどの点に変換する必要があるかを関数に伝えるために使用されます。一致リストが指定されていない場合、関数は、lst1 の最初の点が lst2 の最初の点と一致する必要があると想定します...
C++ の 3 つのポイントのセットに対する同様の関数は次のとおりです。
#include <Eigen/Dense>
#include <Eigen/Geometry>
using namespace Eigen;
/// Determine rotation quaternion from coordinate system 1 (vectors
/// x1, y1, z1) to coordinate system 2 (vectors x2, y2, z2)
Quaterniond QuaternionRot(Vector3d x1, Vector3d y1, Vector3d z1,
Vector3d x2, Vector3d y2, Vector3d z2) {
Matrix3d M = x1*x2.transpose() + y1*y2.transpose() + z1*z2.transpose();
Matrix4d N;
N << M(0,0)+M(1,1)+M(2,2) ,M(1,2)-M(2,1) , M(2,0)-M(0,2) , M(0,1)-M(1,0),
M(1,2)-M(2,1) ,M(0,0)-M(1,1)-M(2,2) , M(0,1)+M(1,0) , M(2,0)+M(0,2),
M(2,0)-M(0,2) ,M(0,1)+M(1,0) ,-M(0,0)+M(1,1)-M(2,2) , M(1,2)+M(2,1),
M(0,1)-M(1,0) ,M(2,0)+M(0,2) , M(1,2)+M(2,1) ,-M(0,0)-M(1,1)+M(2,2);
EigenSolver<Matrix4d> N_es(N);
Vector4d::Index maxIndex;
N_es.eigenvalues().real().maxCoeff(&maxIndex);
Vector4d ev_max = N_es.eigenvectors().col(maxIndex).real();
Quaterniond quat(ev_max(0), ev_max(1), ev_max(2), ev_max(3));
quat.normalize();
return quat;
}