線形計画法にパッケージを使用してlpsolve
いますが、負でない変数のみを解決するチュートリアルを読みました。
これが私のコードです:
library(lpSolve) #linear programming solver
c = c(30, 18, 20, 23, 24, 26)
a = scan(text="66 89 82 14 35 72")
b = 50
con.qual.s1=scan(text="64 98 17 55 27 80")
con.qual.s2=scan(text="16 59 88 89 60 47")
qual.cons=c(53,82)
n=6 #activities
m=3 #resources
f.rhs = c(b,qual.cons)
f.con <- matrix (rbind(a,con.qual.s1,con.qual.s2,diag.p),nrow=m+nrow(diag.p))
f.obj.d <- c(50,53,82)
diag.d=diag(x = 1, m, m) #non-negativity
f.con.d <- matrix (rbind(t(f.con[1:m,]),diag.d),nrow=n+nrow(diag.d))
f.dir.d <- c(rep("<=",7),rep(">=",2))
f.rhs.d <- c(c,rep(0,m))
of.d=lp ("max", f.obj.d, f.con.d, f.dir.d, f.rhs.d,compute.sens=TRUE)
制約番号 7 が非正であるという事実を無視することに注意してください。
lpSolveAPI
編集:パッケージに新しいコードを追加しました。その動作を確認するために、主問題と双対問題で異なるコードを用意しました。
データ:
c = c(30, 18, 20, 23, 24, 26)
a = scan(text="66 89 82 14 35 72")
b = 50
con.qual.s1=scan(text="64 98 17 55 27 80")
con.qual.s2=scan(text="16 59 88 89 60 47")
qual.cons=c(53,82)
n=6 #activities
m=3 #resources
主な問題: (すべての変数が非負でなければならないため、ここでは問題はありません)
library(lpSolveAPI)
lprec.p <- make.lp(0, n)
f.con <- matrix (rbind(a,con.qual.s1,con.qual.s2),nrow=m)
set.objfn(lprec.p, c)
add.constraint(lprec.p, f.con[1,], "<=", f.rhs[1])
for (i in 2:m) {
add.constraint(lprec.p, f.con[i,], ">=", f.rhs[i])
}
ColNames <- c("x1", "x2", "x3", "x4","x5","x6")
RowNames <- c("pi1", "pi2", "pi3")
dimnames(lprec.p) <- list(RowNames, ColNames)
lprec.p
solve(lprec.p)
get.objective(lprec.p)
二重の問題: (ここでは、最初の変数を非正にする必要があるため、 を使用しますset.bounds
)
library(lpSolveAPI)
lprec.d <- make.lp(0, m)
lp.control(lprec.d,sense="max")
f.con.d=matrix (cbind(a,con.qual.s1,con.qual.s2),ncol=m)
set.objfn(lprec.d, f.rhs)
for (i in 1:n) {
add.constraint(lprec.d, f.con.d[i,], "<=", c[i])
}
set.bounds(lprec.d, lower = c(-Inf), upper = c(0),columns = c(1))
RowNames <- c("x1", "x2", "x3", "x4","x5","x6")
ColNames <- c("pi1", "pi2", "pi3")
dimnames(lprec.d) <- list(RowNames, ColNames)
lprec.d
solve(lprec.d)
get.objective(lprec.d)