20

サイズ 100x100 のグレースケール画像を、ストライドサイズ 1 でオーバーラップするサイズ 39x39 のパッチにスライスしようとしています。これは、1 ピクセル右または下から始まる次のパッチが、前のパッチと異なるだけであることを意味します。 1 つの追加の列/行。

コードの大まかな概要: まず、画像からパッチの 2D 配列を構築し、パッチから画像を構築できるように、各パッチのインデックスを計算します。

patches = imgFlat[ind]

'patches' は、各列がベクトル形式のパッチを含む 2D 配列です。

これらのパッチは処理され、各パッチは個別に処理され、その後、事前に計算されたインデックスを使用して、再び画像にマージされます。

img = np.sum(patchesWithColFlat[ind],axis=2)

パッチがオーバーラップするため、最後に img に事前計算された重みを掛ける必要があります。

imgOut = weights*imgOut

私のコードは非常に遅く、スピードは重要な問題です。10^8 パッチ。

関数 get_indices_for_un_patchify と weights_unpatchify は 1 回事前計算できるため、速度は patchify と unpatchify のみの問題です。

ヒントをありがとう。

カルロス

import numpy as np
import scipy
import collections
import random as rand


def get_indices_for_un_patchify(sImg,sP,step):
    ''' creates indices for fast patchifying and unpatchifying

    INPUTS:
      sx    image size
      sp    patch size
      step  offset between two patches (default == [1,1])

      OUTPUTS:
       patchInd             collection with indices
       patchInd.img2patch   patchifying indices
                            patch = img(patchInd.img2patch);
       patchInd.patch2img   unpatchifying indices

    NOTE: * for unpatchifying necessary to add a 0 column to the patch matrix
          * matrices are constructed row by row, as normally there are less rows than columns in the 
            patchMtx
     '''
    lImg = np.prod(sImg)
    indImg = np.reshape(range(lImg), sImg)

    # no. of patches which fit into the image
    sB = (sImg - sP + step) / step

    lb              = np.prod(sB)
    lp              = np.prod(sP)
    indImg2Patch    = np.zeros([lp, lb])
    indPatch        = np.reshape(range(lp*lb), [lp, lb])

    indPatch2Img = np.ones([sImg[0],sImg[1],lp])*(lp*lb+1)

    # default value should be last column
    iRow   = 0;
    for jCol in range(sP[1]):
        for jRow in range(sP[0]):
            tmp1 = np.array(range(0, sImg[0]-sP[0]+1, step[0]))
            tmp2 = np.array(range(0, sImg[1]-sP[1]+1, step[1]))
            sel1                    = jRow  + tmp1
            sel2                    = jCol  + tmp2
            tmpIndImg2Patch = indImg[sel1,:]          
            # do not know how to combine following 2 lines in python
            tmpIndImg2Patch = tmpIndImg2Patch[:,sel2]
            indImg2Patch[iRow, :]   = tmpIndImg2Patch.flatten()

            # next line not nice, but do not know how to implement it better
            indPatch2Img[min(sel1):max(sel1)+1, min(sel2):max(sel2)+1, iRow] = np.reshape(indPatch[iRow, :, np.newaxis], sB)
            iRow                    += 1

    pInd = collections.namedtuple
    pInd.patch2img = indPatch2Img
    pInd.img2patch = indImg2Patch

    return pInd

def weights_unpatchify(sImg,pInd):
    weights = 1./unpatchify(patchify(np.ones(sImg), pInd), pInd)
    return weights

# @profile
def patchify(img,pInd):
    imgFlat = img.flat
   # imgFlat = img.flatten()
    ind = pInd.img2patch.tolist()
    patches = imgFlat[ind]

    return patches

# @profile
def unpatchify(patches,pInd):
    # add a row of zeros to the patches matrix    
    h,w = patches.shape
    patchesWithCol = np.zeros([h+1,w])
    patchesWithCol[:-1,:] = patches
    patchesWithColFlat = patchesWithCol.flat
   #  patchesWithColFlat = patchesWithCol.flatten()
    ind = pInd.patch2img.tolist()
    img = np.sum(patchesWithColFlat[ind],axis=2)
    return img

ここでは、たとえばランダムな画像を使用して、これらの関数を呼び出します

if __name__ =='__main__':
    img = np.random.randint(255,size=[100,100])
    sImg = img.shape
    sP = np.array([39,39])  # size of patch
    step = np.array([1,1])  # sliding window step size
    pInd = get_indices_for_un_patchify(sImg,sP,step)
    patches = patchify(img,pInd)
    imgOut = unpatchify(patches,pInd)
    weights = weights_unpatchify(sImg,pInd)
    imgOut = weights*imgOut

    print 'Difference of img and imgOut = %.7f' %sum(img.flatten() - imgOut.flatten())
4

1 に答える 1