6

ローディングを使用して主成分分析のスコアを構築できるようにしたいと考えていますが、princomp 関数がデータセットのスコアを計算するときに実際に何をしているのかわかりません。おもちゃの例:

cc <- matrix(1:24,ncol=4)
PCAcc <- princomp(cc,scores=T,cor=T)
PCAcc$loadings

Loadings:
     Comp.1 Comp.2 Comp.3 Comp.4
[1,]  0.500  0.866              
[2,]  0.500 -0.289  0.816       
[3,]  0.500 -0.289 -0.408 -0.707
[4,]  0.500 -0.289 -0.408  0.707

PCAcc$scores

       Comp.1        Comp.2        Comp.3 Comp.4
[1,] -2.92770 -6.661338e-16 -3.330669e-16      0
[2,] -1.75662 -4.440892e-16 -2.220446e-16      0
[3,] -0.58554 -1.110223e-16 -6.938894e-17      0
[4,]  0.58554  1.110223e-16  6.938894e-17      0
[5,]  1.75662  4.440892e-16  2.220446e-16      0
[6,]  2.92770  6.661338e-16  3.330669e-16      0

私の理解では、スコアはローディングと再スケーリングされた元のデータの線形結合です。「手」で試す:

rescaled <- t(t(cc)-apply(cc,2,mean))
rescaled%*%PCAcc$loadings

     Comp.1        Comp.2        Comp.3 Comp.4
[1,]     -5 -1.332268e-15 -4.440892e-16      0
[2,]     -3 -6.661338e-16 -3.330669e-16      0
[3,]     -1 -2.220446e-16 -1.110223e-16      0
[4,]      1  2.220446e-16  1.110223e-16      0
[5,]      3  6.661338e-16  3.330669e-16      0
[6,]      5  1.332268e-15  4.440892e-16      0

列は、それぞれ 1.707825、2、および 1.333333 の係数でずれています。どうしてこれなの?おもちゃのデータ マトリックスは各列の分散が同じであるため、ここでは正規化は必要ありません。どんな助けでも大歓迎です。

ありがとう!

4

1 に答える 1