ここで初めて質問するので、できるだけ明確にするようにしますが、さらに情報を提供する必要がある場合はお知らせください。第二に、それは長い質問です...うまくいけば、誰かのために簡単に解決できます;)! そこで、「R」を使用して、いくつかの論文 (Manera et al. 2012) に基づいて多変量 GARCH モデルをモデル化しています。
平均方程式の外部リグレッサーを使用して、一定の条件付き相関 (CCC) モデルと動的条件付き相関 (DCC) モデルをモデル化します。「R」バージョン 3.0.1 をパッケージ「rugarch」バージョン 1.2-2 と共に使用して、外部リグレッサーを使用する一変量 GARCH を、CCC/DCC モデルに対して「ccgarch」パッケージ (バージョン 0.2.0-2) を使用します。(現在、「rmgarch」パッケージを検討していますが、これは DCC 専用のようで、CCC モデルも必要です。)
モデルの平均方程式に問題があります。上記の論文では、CCC モデルと DCC モデルの間の平均方程式のパラメーター推定値が変化します。そして、Rでそれを行う方法がわかりません...(現在、GoogleとTsayの本「金融時系列の分析」とEngleの本「相関の予測」を調べて間違いを見つけています)
「私の平均方程式は CCC モデルと DCC モデルの間で変わらない」という意味は、次のとおりです。パッケージ rugarch を使用して、n=5 時系列に単変量 GARCH を指定します。次に、GARCH の推定パラメーター (ARCH + GARCH 用語) を使用し、それらを CCC 関数と DCC 関数 "eccc.sim()" および "dcc.sim()" の両方に使用します。次に、eccc.estimation() および dcc.estimation() 関数から、分散方程式と相関行列の推定値を取得できます。しかし、平均方程式ではありません。
単変量モデルと CCC モデルのみの R コード (再現可能でオリジナルのもの) を投稿します。私の投稿を読んでくれてありがとうございます!!!!!
注: 以下のコードでは、"data.repl" は、dim 843x22 の "zoo" オブジェクトです (9 日次商品は系列と説明変数系列を返します)。多変量 GARCH は 5 シリーズ専用です。
再現可能なコード:
# libraries:
library(rugarch)
library(ccgarch)
library(quantmod)
# Creating fake data:
dataRegr <- matrix(rep(rnorm(3149, 11, 1),1), ncol=1, nrow=3149)
dataFuelsLag1 <- matrix(rep(rnorm(3149, 24, 8),2), ncol=2, nrow=3149)
#S&P 500 via quantmod and Yahoo Finance
T0 <- "2000-06-23"
T1 <- "2012-12-31"
getSymbols("^GSPC", src="yahoo", from=T0, to=T1)
sp500.close <- GSPC[,"GSPC.Close"],
getSymbols("UBS", src="yahoo", from=T0, to=T1)
ubs.close <- UBS[,"UBS.Close"]
dataReplic <- merge(sp500.close, ubs.close, all=TRUE)
dataReplic[which(is.na(dataReplic[,2])),2] <- 0 #replace NA
### (G)ARCH modelling ###
#########################
# External regressors: macrovariables and all fuels+biofuel Working's T index
ext.regr.ext <- dataRegr
regre.fuels <- cbind(dataFuelsLag1, dataRegr)
### spec of GARCH(1,1) spec with AR(1) ###
garch11.fuels <- as.list(1:2)
for(i in 1:2){
garch11.fuels[[i]] <- ugarchspec(mean.model = list(armaOrder=c(1,0),
external.regressors = as.matrix(regre.fuels[,-i])))
}
### fit of GARCH(1,1) AR(1) ###
garch11.fuels.fit <- as.list(1:2)
for(i in 1:2){
garch11.fuels.fit[[i]] <- ugarchfit(garch11.fuels[[i]], dataReplic[,i])
}
##################################################################
#### CCC fuels: with external regression in the mean eqaution ####
##################################################################
nObs <- length(data.repl[-1,1])
coef.unlist <- sapply(garch11.fuels.fit, coef)
cccFuels.a <- rep(0.1, 2)
cccFuels.A <- diag(coef.unlist[6,])
cccFuels.B <- diag(coef.unlist[7, ])
cccFuels.R <- corr.test(data.repl[,fuels.ind], data.repl[,fuels.ind])$r
# model=extended (Jeantheau (1998))
ccc.fuels.sim <- eccc.sim(nobs = nObs, a=cccFuels.a, A=cccFuels.A,
B=cccFuels.B, R=cccFuels.R, model="extended")
ccc.fuels.eps <- ccc.fuels.sim$eps
ccc.fuels.est <- eccc.estimation(a=cccFuels.a, A=cccFuels.A,
B=cccFuels.B, R=cccFuels.R,
dvar=ccc.fuels.eps, model="extended")
ccc.fuels.condCorr <- round(corr.test(ccc.fuels.est$std.resid,
ccc.fuels.est$std.resid)$r,digits=3)
私の元のコード:
### (G)ARCH modelling ###
#########################
# External regressors: macrovariables and all fuels+biofuel Working's T index
ext.regr.ext <- as.matrix(data.repl[-1,c(10:13, 16, 19:22)])
regre.fuels <- cbind(fuel.lag1, ext.regr.ext) #fuel.lag1 is the pre-lagged series
### spec of GARCH(1,1) spec with AR(1) ###
garch11.fuels <- as.list(1:5)
for(i in 1:5){
garch11.fuels[[i]] <- ugarchspec(mean.model = list(armaOrder=c(1,0),
external.regressors = as.matrix(regre.fuels[,-i])))
}# regre.fuels[,-i] => "-i" because I model an AR(1) for each mean equation
### fit of GARCH(1,1) AR(1) ###
garch11.fuels.fit <- as.list(1:5)
for(i in 1:5){
j <- i
if(j==5){j <- 7} #because 5th "fuels" is actually column #7 in data.repl
garch11.fuels.fit[[i]] <- ugarchfit(garch11.fuels[[i]], as.matrix(data.repl[-1,j])))
}
#fuelsLag1.names <- paste(cmdty.names[fuels.ind], "(-1)")
fuelsLag1.names <- cmdty.names[fuels.ind]
rowNames.ext <- c("Constant", fuelsLag1.names, "Working's T Gasoline", "Working's T Heating Oil",
"Working's T Natural Gas", "Working's T Crude Oil",
"Working's T Soybean Oil", "Junk Bond", "T-bill",
"SP500", "Exch.Rate")
ic.n <- c("Akaike", "Bayes")
garch11.ext.univSpec <- univ.spec(garch11.fuels.fit, ols.fit.ext, rowNames.ext,
rowNum=c(1:15), colNames=cmdty.names[fuels.ind],
ccc=TRUE)
##################################################################
#### CCC fuels: with external regression in the mean eqaution ####
##################################################################
# From my GARCH(1,1)-AR(1) model, I extract ARCH and GARCH
# in order to model a CCC GARCH model:
nObs <- length(data.repl[-1,1])
coef.unlist <- sapply(garch11.fuels.fit, coef)
cccFuels.a <- rep(0.1, length(fuels.ind))
cccFuels.A <- diag(coef.unlist[17,])
cccFuels.B <- diag(coef.unlist[18, ])
#based on Engle(2009) book, page 31:
cccFuels.R <- corr.test(data.repl[,fuels.ind], data.repl[,fuels.ind])$r
# model=extended (Jeantheau (1998))
# "allow the squared errors and variances of the series to affect
# the dynamics of the individual conditional variances
ccc.fuels.sim <- eccc.sim(nobs = nObs, a=cccFuels.a, A=cccFuels.A,
B=cccFuels.B, R=cccFuels.R, model="extended")
ccc.fuels.eps <- ccc.fuels.sim$eps
ccc.fuels.est <- eccc.estimation(a=cccFuels.a, A=cccFuels.A,
B=cccFuels.B, R=cccFuels.R,
dvar=ccc.fuels.eps, model="extended")
ccc.fuels.condCorr <- round(corr.test(ccc.fuels.est$std.resid,
ccc.fuels.est$std.resid)$r,digits=3)
colnames(ccc.fuels.condCorr) <- cmdty.names[fuels.ind]
rownames(ccc.fuels.condCorr) <- cmdty.names[fuels.ind]
lowerTri(ccc.fuels.condCorr, rep=NA)