0

長いログ ファイルにあるテーブルから特定の行を抽出して出力しようとしています。次のようになります。

 ******************************************************************************
                    XSCALE (VERSION  July 4, 2012)                 4-Jun-2013
 ******************************************************************************

 Author: Wolfgang Kabsch
 Copy licensed until 30-Jun-2013 to
  academic users for non-commercial applications   
 No redistribution.


 ******************************************************************************
                              CONTROL CARDS
 ******************************************************************************

  MAXIMUM_NUMBER_OF_PROCESSORS=16
  RESOLUTION_SHELLS= 20 10 6 4 3 2.5 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8
  MINIMUM_I/SIGMA=4.0
  OUTPUT_FILE=fae-ip.ahkl
    INPUT_FILE= /dls/sci-scratch/Sam/FC59251/fr6_1/XDS_ASCII.HKL

 THE DATA COLLECTION STATISTICS REPORTED BELOW ASSUMES:
 SPACE_GROUP_NUMBER=   97
 UNIT_CELL_CONSTANTS=   128.28   128.28   181.47  90.000  90.000  90.000

 ***** 16 EQUIVALENT POSITIONS IN SPACE GROUP # 97 *****

    If x',y',z' is an equivalent position to x,y,z, then
        x'=x*ML(1)+y*ML( 2)+z*ML( 3)+ML( 4)/12.0
        y'=x*ML(5)+y*ML( 6)+z*ML( 7)+ML( 8)/12.0
        z'=x*ML(9)+y*ML(10)+z*ML(11)+ML(12)/12.0

    #    1  2  3  4    5  6  7  8    9 10 11 12 
    1    1  0  0  0    0  1  0  0    0  0  1  0
    2   -1  0  0  0    0 -1  0  0    0  0  1  0
    3   -1  0  0  0    0  1  0  0    0  0 -1  0
    4    1  0  0  0    0 -1  0  0    0  0 -1  0
    5    0  1  0  0    1  0  0  0    0  0 -1  0
    6    0 -1  0  0   -1  0  0  0    0  0 -1  0
    7    0 -1  0  0    1  0  0  0    0  0  1  0
    8    0  1  0  0   -1  0  0  0    0  0  1  0
    9    1  0  0  6    0  1  0  6    0  0  1  6
   10   -1  0  0  6    0 -1  0  6    0  0  1  6
   11   -1  0  0  6    0  1  0  6    0  0 -1  6
   12    1  0  0  6    0 -1  0  6    0  0 -1  6
   13    0  1  0  6    1  0  0  6    0  0 -1  6
   14    0 -1  0  6   -1  0  0  6    0  0 -1  6
   15    0 -1  0  6    1  0  0  6    0  0  1  6
   16    0  1  0  6   -1  0  0  6    0  0  1  6


 ALL DATA SETS WILL BE SCALED TO /dls/sci-scratch/Sam/FC59251/fr6_1/XDS_ASCII.HKL  


 ******************************************************************************
                    READING INPUT REFLECTION DATA FILES
 ******************************************************************************


 DATA    MEAN       REFLECTIONS        INPUT FILE NAME
 SET# INTENSITY  ACCEPTED REJECTED
   1  0.1358E+03  1579957      0  /dls/sci-scratch/Sam/FC59251/fr6_1/XDS_ASCII.HKL  

 ******************************************************************************
           CORRECTION FACTORS AS FUNCTION OF IMAGE NUMBER & RESOLUTION
 ******************************************************************************

 RECIPROCAL CORRECTION FACTORS FOR INPUT DATA SETS MERGED TO
 OUTPUT FILE: fae-ip.ahkl                                       

 THE CALCULATIONS ASSUME         FRIEDEL'S_LAW= TRUE
 TOTAL NUMBER OF CORRECTION FACTORS DEFINED      720
 DEGREES OF FREEDOM OF CHI^2 FIT            357222.9
 CHI^2-VALUE OF FIT OF CORRECTION FACTORS      1.024
 NUMBER OF CYCLES CARRIED OUT                      4

 CORRECTION FACTORS for visual inspection by XDS-Viewer DECAY_001.cbf       
 XMIN=     0.6 XMAX=  1799.3 NXBIN=   36
 YMIN= 0.00049 YMAX= 0.44483 NYBIN=   20
 NUMBER OF REFLECTIONS USED FOR DETERMINING CORRECTION FACTORS     396046


 ******************************************************************************
  CORRECTION FACTORS AS FUNCTION OF X (fast) & Y(slow) IN THE DETECTOR PLANE
 ******************************************************************************

 RECIPROCAL CORRECTION FACTORS FOR INPUT DATA SETS MERGED TO
 OUTPUT FILE: fae-ip.ahkl                                       

 THE CALCULATIONS ASSUME         FRIEDEL'S_LAW= TRUE
 TOTAL NUMBER OF CORRECTION FACTORS DEFINED     7921
 DEGREES OF FREEDOM OF CHI^2 FIT            356720.6
 CHI^2-VALUE OF FIT OF CORRECTION FACTORS      1.023
 NUMBER OF CYCLES CARRIED OUT                      3

 CORRECTION FACTORS for visual inspection by XDS-Viewer MODPIX_001.cbf      
 XMIN=     5.4 XMAX=  2457.6 NXBIN=   89
 YMIN=    40.0 YMAX=  2516.7 NYBIN=   89
 NUMBER OF REFLECTIONS USED FOR DETERMINING CORRECTION FACTORS     396046


 ******************************************************************************
   CORRECTION FACTORS AS FUNCTION OF IMAGE NUMBER & DETECTOR SURFACE POSITION
 ******************************************************************************

 RECIPROCAL CORRECTION FACTORS FOR INPUT DATA SETS MERGED TO
 OUTPUT FILE: fae-ip.ahkl                                       

 THE CALCULATIONS ASSUME         FRIEDEL'S_LAW= TRUE
 TOTAL NUMBER OF CORRECTION FACTORS DEFINED      468
 DEGREES OF FREEDOM OF CHI^2 FIT            357286.9
 CHI^2-VALUE OF FIT OF CORRECTION FACTORS      1.022
 NUMBER OF CYCLES CARRIED OUT                      3

 CORRECTION FACTORS for visual inspection by XDS-Viewer ABSORP_001.cbf      
 XMIN=     0.6 XMAX=  1799.3 NXBIN=   36
 DETECTOR_SURFACE_POSITION=    1232    1278
 DETECTOR_SURFACE_POSITION=    1648    1699
 DETECTOR_SURFACE_POSITION=     815    1699
 DETECTOR_SURFACE_POSITION=     815     858
 DETECTOR_SURFACE_POSITION=    1648     858
 DETECTOR_SURFACE_POSITION=    2174    1673
 DETECTOR_SURFACE_POSITION=    1622    2230
 DETECTOR_SURFACE_POSITION=     841    2230
 DETECTOR_SURFACE_POSITION=     289    1673
 DETECTOR_SURFACE_POSITION=     289     884
 DETECTOR_SURFACE_POSITION=     841     326
 DETECTOR_SURFACE_POSITION=    1622     326
 DETECTOR_SURFACE_POSITION=    2174     884
 NUMBER OF REFLECTIONS USED FOR DETERMINING CORRECTION FACTORS     396046


 ******************************************************************************
    CORRECTION PARAMETERS FOR THE STANDARD ERROR OF REFLECTION INTENSITIES
 ******************************************************************************

 The variance v0(I) of the intensity I obtained from counting statistics is
 replaced by v(I)=a*(v0(I)+b*I^2). The model parameters a, b are chosen to
 minimize the discrepancies between v(I) and the variance estimated from
 sample statistics of symmetry related reflections. This model implicates
 an asymptotic limit ISa=1/SQRT(a*b) for the highest I/Sigma(I) that the
 experimental setup can produce (Diederichs (2010) Acta Cryst D66, 733-740).
 Often the value of ISa is reduced from the initial value ISa0 due to systematic
 errors showing up by comparison with other data sets in the scaling procedure.
 (ISa=ISa0=-1 if v0 is unknown for a data set.)

     a        b          ISa    ISa0   INPUT DATA SET
 1.086E+00  1.420E-03   25.46   29.00 /dls/sci-scratch/Sam/FC59251/fr6_1/XDS_ASCII.HKL  


 FACTOR TO PLACE ALL DATA SETS TO AN APPROXIMATE ABSOLUTE SCALE   0.4178E+04
 (ASSUMING A PROTEIN WITH 50% SOLVENT)



 ******************************************************************************
  STATISTICS OF SCALED OUTPUT DATA SET : fae-ip.ahkl                                       
  FILE TYPE:         XDS_ASCII      MERGE=FALSE          FRIEDEL'S_LAW=TRUE 

       186 OUT OF   1579957 REFLECTIONS REJECTED
   1579771 REFLECTIONS ON OUTPUT FILE 

 ******************************************************************************
 DEFINITIONS:
 R-FACTOR
 observed = (SUM(ABS(I(h,i)-I(h))))/(SUM(I(h,i)))
 expected = expected R-FACTOR derived from Sigma(I)

 COMPARED = number of reflections used for calculating R-FACTOR
 I/SIGMA  = mean of intensity/Sigma(I) of unique reflections
            (after merging symmetry-related observations)
 Sigma(I) = standard deviation of reflection intensity I
            estimated from sample statistics

 R-meas   = redundancy independent R-factor (intensities)
            Diederichs & Karplus (1997), Nature Struct. Biol. 4, 269-275.

 CC(1/2)  = percentage of correlation between intensities from
            random half-datasets. Correlation significant at
            the 0.1% level is marked by an asterisk.
            Karplus & Diederichs (2012), Science 336, 1030-33
 Anomal   = percentage of correlation between random half-sets
  Corr      of anomalous intensity differences. Correlation
            significant at the 0.1% level is marked.
 SigAno   = mean anomalous difference in units of its estimated
            standard deviation (|F(+)-F(-)|/Sigma). F(+), F(-)
            are structure factor estimates obtained from the
            merged intensity observations in each parity class.
  Nano    = Number of unique reflections used to calculate
            Anomal_Corr & SigAno. At least two observations
            for each (+ and -) parity are required.


 SUBSET OF INTENSITY DATA WITH SIGNAL/NOISE >= -3.0 AS FUNCTION OF RESOLUTION
 RESOLUTION     NUMBER OF REFLECTIONS    COMPLETENESS R-FACTOR  R-FACTOR COMPARED I/SIGMA   R-meas  CC(1/2)  Anomal  SigAno   Nano
   LIMIT     OBSERVED  UNIQUE  POSSIBLE     OF DATA   observed  expected                                      Corr

    20.00         557      66        74       89.2%       2.7%      3.0%      557   58.75     2.9%   100.0*    45    1.674      25
    10.00        5018     417       417      100.0%       2.4%      3.1%     5018   75.34     2.6%   100.0*     2    0.812     276
     6.00       18352    1583      1584       99.9%       2.8%      3.3%    18351   65.55     2.9%   100.0*    11*   0.914    1248
     4.00       59691    4640      4640      100.0%       3.2%      3.5%    59690   64.96     3.4%   100.0*     4    0.857    3987
     3.00      112106    8821      8822      100.0%       4.4%      4.4%   112102   50.31     4.6%    99.9*    -3    0.844    7906
     2.50      147954   11023     11023      100.0%       8.7%      8.6%   147954   29.91     9.1%    99.8*     0    0.829   10096
     2.00      332952   24698     24698      100.0%      21.4%     21.6%   332949   14.32    22.3%    99.2*     1    0.804   22992
     1.90      106645    8382      8384      100.0%      56.5%     57.1%   106645    5.63    58.8%    94.7*    -2    0.767    7886
     1.80      138516   10342     10343      100.0%      86.8%     87.0%   138516    3.64    90.2%    87.9*    -2    0.762    9741
     1.70      175117   12897     12899      100.0%     140.0%    140.1%   175116    2.15   145.4%    69.6*    -2    0.732   12188
     1.60      209398   16298     16304      100.0%     206.1%    208.5%   209397    1.35   214.6%    48.9*    -2    0.693   15466
     1.50      273432   20770     20893       99.4%     333.4%    342.1%   273340    0.80   346.9%    23.2*    -1    0.644   19495
     1.40          33      27     27248        0.1%      42.6%    112.7%       12    0.40    60.3%    88.2      0    0.000       0
     1.30           0       0     36205        0.0%     -99.9%    -99.9%        0  -99.00   -99.9%     0.0      0    0.000       0
     1.20           0       0     49238        0.0%     -99.9%    -99.9%        0  -99.00   -99.9%     0.0      0    0.000       0
     1.10           0       0     68746        0.0%     -99.9%    -99.9%        0  -99.00   -99.9%     0.0      0    0.000       0
     1.00           0       0     98884        0.0%     -99.9%    -99.9%        0  -99.00   -99.9%     0.0      0    0.000       0
     0.90           0       0    147505        0.0%     -99.9%    -99.9%        0  -99.00   -99.9%     0.0      0    0.000       0
     0.80           0       0    230396        0.0%     -99.9%    -99.9%        0  -99.00   -99.9%     0.0      0    0.000       0
    total     1579771  119964    778303       15.4%      12.8%     13.1%  1579647   14.33    13.4%    99.9*    -1    0.755  111306


 ========== STATISTICS OF INPUT DATA SET ==========


  R-FACTORS FOR INTENSITIES OF DATA SET /dls/sci-scratch/Sam/FC59251/fr6_1/XDS_ASCII.HKL  

 RESOLUTION   R-FACTOR   R-FACTOR   COMPARED
   LIMIT      observed   expected

    20.00         2.7%       3.0%       557
    10.00         2.4%       3.1%      5018
     6.00         2.8%       3.3%     18351
     4.00         3.2%       3.5%     59690
     3.00         4.4%       4.4%    112102
     2.50         8.7%       8.6%    147954
     2.00        21.4%      21.6%    332949
     1.90        56.5%      57.1%    106645
     1.80        86.8%      87.0%    138516
     1.70       140.0%     140.1%    175116
     1.60       206.1%     208.5%    209397
     1.50       333.4%     342.1%    273340
     1.40        42.6%     112.7%        12
     1.30       -99.9%     -99.9%         0
     1.20       -99.9%     -99.9%         0
     1.10       -99.9%     -99.9%         0
     1.00       -99.9%     -99.9%         0
     0.90       -99.9%     -99.9%         0
     0.80       -99.9%     -99.9%         0
    total        12.8%      13.1%   1579647


 ******************************************************************************
    WILSON STATISTICS OF SCALED DATA SET: fae-ip.ahkl                                       
 ******************************************************************************

 Data is divided into resolution shells and a straight line 
 A - 2*B*SS is fitted to log<I>, where
   RES    = mean resolution (Angstrom) in shell
   SS     = mean of (sin(THETA)/LAMBDA)**2 in shell
   <I>    = mean reflection intensity in shell
   BO     = (A - log<I>)/(2*SS)
    #     = number of reflections in resolution shell

   WILSON LINE (using all data) : A=  14.997 B=  29.252 CORRELATION=  0.99
      #      RES      SS        <I>       log(<I>)       BO
    1667     8.445   0.004  2.3084E+06      14.652      49.2
    2798     5.260   0.009  1.5365E+06      14.245      41.6
    3547     4.106   0.015  2.0110E+06      14.514      16.3
    4147     3.480   0.021  1.2910E+06      14.071      22.4
    4688     3.073   0.026  7.3586E+05      13.509      28.1
    5154     2.781   0.032  4.6124E+05      13.042      30.3
    5568     2.560   0.038  3.1507E+05      12.661      30.6
    5966     2.384   0.044  2.4858E+05      12.424      29.2
    6324     2.240   0.050  1.8968E+05      12.153      28.5
    6707     2.119   0.056  1.3930E+05      11.844      28.3
    7030     2.016   0.062  9.1378E+04      11.423      29.0
    7331     1.926   0.067  5.4413E+04      10.904      30.4
    7664     1.848   0.073  3.5484E+04      10.477      30.9
    7934     1.778   0.079  2.4332E+04      10.100      31.0
    8193     1.716   0.085  1.8373E+04       9.819      30.5
    8466     1.660   0.091  1.4992E+04       9.615      29.7
    8743     1.609   0.097  1.1894E+04       9.384      29.1
    9037     1.562   0.102  9.4284E+03       9.151      28.5
    9001     1.520   0.108  8.3217E+03       9.027      27.6


 HIGHER ORDER MOMENTS OF WILSON DISTRIBUTION OF  CENTRIC DATA
    AS COMPARED WITH THEORETICAL VALUES. (EXPECTED: 1.00)    
      #      RES        <I**2>/      <I**3>/      <I**4>/  
                         3<I>**2     15<I>**3    105<I>**4 

     440     8.445        0.740        0.505        0.294
     442     5.260        0.762        0.733        0.735
     442     4.106        0.888        0.788        0.717
     439     3.480        1.339        1.733        2.278
     438     3.073        1.168        1.259        1.400
     440     2.781        1.215        1.681        2.269
     438     2.560        1.192        1.603        2.405
     450     2.384        1.117        1.031        0.891
     432     2.240        1.214        1.567        2.173
     438     2.119        0.972        0.992        0.933
     445     2.016        1.029        1.019        0.986
     441     1.926        1.603        1.701        1.554
     440     1.848        1.544        1.871        2.076
     436     1.778        0.927        0.661        0.435
     444     1.716        1.134        1.115        1.197
     440     1.660        1.271        1.618        2.890
     436     1.609        1.424        1.045        0.941
     448     1.562        1.794        1.447        1.423
     426     1.520        2.517        1.496        2.099
    8355   overall        1.253        1.255        1.455


 HIGHER ORDER MOMENTS OF WILSON DISTRIBUTION OF ACENTRIC DATA
    AS COMPARED WITH THEORETICAL VALUES. (EXPECTED: 1.00)    
      #      RES        <I**2>/      <I**3>/      <I**4>/  
                         2<I>**2      6<I>**3     24<I>**4 

    1227     8.445        1.322        1.803        2.340
    2356     5.260        1.167        1.420        1.789
    3105     4.106        1.010        1.046        1.100
    3708     3.480        1.055        1.262        1.592
    4250     3.073        0.999        1.083        1.375
    4714     2.781        1.061        1.232        1.591
    5130     2.560        1.049        1.178        1.440
    5516     2.384        1.025        1.117        1.290
    5892     2.240        1.001        1.058        1.230
    6269     2.119        1.060        1.140        1.233
    6585     2.016        1.109        1.344        1.709
    6890     1.926        1.028        1.100        1.222
    7224     1.848        1.060        1.150        1.348
    7498     1.778        1.143        1.309        1.655
    7749     1.716        1.182        1.299        1.549
    8026     1.660        1.286        1.376        1.538
    8307     1.609        1.419        1.481        1.707
    8589     1.562        1.663        1.750        2.119
    8575     1.520        2.271        2.172        5.088
  111610   overall        1.253        1.354        1.804

   ======= CUMULATIVE INTENSITY DISTRIBUTION =======
 DEFINITIONS:
   <I>    = mean reflection intensity
 Na(Z)exp = expected number of acentric reflections with I <= Z*<I>
 Na(Z)obs = observed number of acentric reflections with I <= Z*<I>
 Nc(Z)exp = expected number of  centric reflections with I <= Z*<I>
 Nc(Z)obs = observed number of  centric reflections with I <= Z*<I>



 Nc(Z)obs/Nc(Z)exp versus resolution and Z (0.1-1.0)
      #      RES     0.1   0.2   0.3   0.4   0.5   0.6   0.7   0.8   0.9   1.0

     440     8.445  0.75  0.95  0.98  1.00  0.98  0.99  1.00  1.00  1.02  1.02
     442     5.260  1.18  1.11  1.09  1.09  1.07  1.08  1.08  1.08  1.07  1.06
     442     4.106  0.97  1.01  0.98  0.97  0.96  0.94  0.92  0.91  0.92  0.94
     439     3.480  0.91  0.88  0.91  0.91  0.89  0.90  0.90  0.89  0.89  0.93
     438     3.073  0.92  0.92  0.90  0.93  0.94  0.99  1.02  0.99  0.96  0.96
     440     2.781  0.98  1.01  1.02  1.05  1.04  1.03  1.04  1.02  1.01  1.01
     438     2.560  1.02  1.10  1.05  1.03  1.01  1.03  1.04  1.01  1.04  1.02
     450     2.384  0.78  0.93  0.92  0.93  0.89  0.89  0.92  0.95  0.96  0.95
     432     2.240  0.69  0.82  0.84  0.86  0.91  0.92  0.93  0.94  0.95  0.95
     438     2.119  0.75  0.87  0.95  1.02  1.09  1.09  1.12  1.12  1.10  1.08
     445     2.016  0.86  0.86  0.87  0.90  0.91  0.93  0.98  0.99  1.00  1.00
     441     1.926  0.88  0.79  0.79  0.81  0.82  0.84  0.85  0.85  0.86  0.86
     440     1.848  1.00  0.89  0.85  0.83  0.85  0.85  0.88  0.90  0.90  0.92
     436     1.778  1.03  0.87  0.79  0.79  0.80  0.84  0.85  0.87  0.90  0.92
     444     1.716  1.09  0.85  0.81  0.78  0.80  0.80  0.81  0.81  0.84  0.85
     440     1.660  1.27  1.01  0.93  0.88  0.85  0.84  0.84  0.85  0.88  0.91
     436     1.609  1.34  1.00  0.89  0.83  0.80  0.80  0.80  0.81  0.80  0.83
     448     1.562  1.39  1.09  0.93  0.86  0.81  0.78  0.77  0.79  0.78  0.78
     426     1.520  1.38  1.03  0.88  0.83  0.82  0.80  0.78  0.76  0.75  0.74
    8355   overall  1.01  0.95  0.92  0.91  0.91  0.91  0.92  0.92  0.93  0.93


 Na(Z)obs/Na(Z)exp versus resolution and Z (0.1-1.0)
      #      RES     0.1   0.2   0.3   0.4   0.5   0.6   0.7   0.8   0.9   1.0

    1227     8.445  1.10  1.22  1.21  1.21  1.14  1.10  1.12  1.10  1.11  1.09
    2356     5.260  1.15  1.10  1.09  1.03  1.03  1.03  1.01  1.01  1.01  1.00
    3105     4.106  0.91  0.96  0.99  1.01  1.02  1.00  1.00  0.99  0.99  1.00
    3708     3.480  0.93  0.97  1.00  1.06  1.05  1.04  1.04  1.04  1.04  1.05
    4250     3.073  0.94  1.02  1.01  1.00  1.01  1.00  1.00  1.01  1.02  1.02
    4714     2.781  1.11  1.04  1.02  1.02  1.02  1.01  1.01  1.01  1.00  1.00
    5130     2.560  1.00  1.10  1.06  1.03  1.01  1.02  1.01  1.01  1.01  1.02
    5516     2.384  1.09  1.08  1.05  1.04  1.04  1.02  1.01  1.01  1.01  1.01
    5892     2.240  0.98  0.99  1.00  1.01  1.01  1.01  1.00  1.00  1.00  1.00
    6269     2.119  1.14  1.04  1.02  1.00  1.00  1.00  1.01  1.02  1.02  1.01
    6585     2.016  1.17  1.02  1.01  1.02  1.02  1.03  1.02  1.02  1.02  1.02
    6890     1.926  1.35  1.07  1.00  0.99  1.00  1.01  1.01  1.00  1.00  1.01
    7224     1.848  1.52  1.11  1.01  0.97  0.96  0.98  0.98  0.98  0.98  0.99
    7498     1.778  1.80  1.22  1.03  0.97  0.95  0.94  0.95  0.95  0.95  0.96
    7749     1.716  2.01  1.28  1.07  0.99  0.94  0.92  0.92  0.92  0.93  0.93
    8026     1.660  2.31  1.41  1.13  1.01  0.95  0.92  0.90  0.89  0.89  0.89
    8307     1.609  2.62  1.54  1.19  1.04  0.95  0.90  0.88  0.87  0.86  0.87
    8589     1.562  2.94  1.69  1.29  1.10  1.00  0.93  0.89  0.86  0.85  0.85
    8575     1.520  3.14  1.78  1.34  1.13  1.01  0.93  0.88  0.85  0.83  0.83
  111610   overall  1.73  1.24  1.09  1.03  0.99  0.97  0.96  0.96  0.96  0.96


 List of     33 reflections *NOT* obeying Wilson distribution (Z> 10.0)

   h    k    l     RES      Z     Intensity    Sigma

   72   11   61    1.52   17.34  0.2886E+06  0.2367E+05 "alien"
   67   53    6    1.50   15.85  0.2638E+06  0.1128E+06 "alien"
   35   10   25    3.17   14.39  0.2118E+08  0.2364E+06 "alien"
   46   17   99    1.50   14.16  0.2357E+06  0.9588E+05 "alien"
   34   32    2    2.75   13.44  0.1239E+08  0.1279E+06 "alien"
   79    6   15    1.60   13.10  0.3117E+06  0.2477E+05 "alien"
   61   20   33    1.88   12.54  0.8900E+06  0.3054E+05 "alien"
   44    4   48    2.30   12.38  0.4695E+07  0.6072E+05 "alien"
   66   25   19    1.79   11.89  0.5788E+06  0.2739E+05 "alien"
   66   25   11    1.81   11.88  0.5781E+06  0.2771E+05 "alien"
   60   43   61    1.50   11.77  0.1959E+06  0.9769E+05 "alien"
   72   11   17    1.74   11.64  0.4278E+06  0.2619E+05 "alien"
   80   24   26    1.50   11.41  0.1899E+06  0.9793E+05 "alien"
   41   21   26    2.59   11.09  0.6988E+07  0.7945E+05 "alien"
   44   18   20    2.59   11.08  0.6982E+07  0.7839E+05 "alien"
   23    3   62    2.59   11.06  0.6971E+07  0.9154E+05 "alien"
   69    7   22    1.80   11.06  0.5383E+06  0.2564E+05 "alien"
   73   10   15    1.72   10.98  0.4036E+06  0.2356E+05 "alien"
   70   17   35    1.68   10.96  0.3286E+06  0.2415E+05 "alien"
   57   24   41    1.88   10.91  0.7746E+06  0.2842E+05 "alien"
   82   24    6    1.50   10.74  0.1787E+06  0.1019E+06 "alien"
   69   25   62    1.50   10.67  0.1775E+06  0.8689E+05 "alien"
   24   20   44    2.91   10.45  0.9641E+07  0.1017E+06 "alien"
   66   43    5    1.63   10.37  0.2468E+06  0.2294E+05 "alien"
   81    4   29    1.53   10.36  0.1725E+06  0.2364E+05 "alien"
   60   40   26    1.72   10.32  0.3792E+06  0.2578E+05 "alien"
   39   18   57    2.18   10.24  0.3885E+07  0.5573E+05 "alien"
   70   41   15    1.57   10.19  0.1922E+06  0.2281E+05 "alien"
   55   36   41    1.79   10.16  0.4942E+06  0.2967E+05 "alien"
   37    4   81    1.88   10.15  0.7202E+06  0.3357E+05 "alien"
   56   27    5    2.06   10.14  0.1854E+07  0.3569E+05 "alien"
   44   39   29    2.06   10.09  0.1844E+07  0.3805E+05 "alien"
   65   46   29    1.56   10.06  0.1898E+06  0.2270E+05 "alien"


 List of     33 reflections *NOT* obeying Wilson distribution (sorted by resolution)
 Ice rings could occur at (Angstrom):
 3.897,3.669,3.441, 2.671,2.249,2.072, 1.948,1.918,1.883,1.721

   h    k    l     RES      Z     Intensity    Sigma

   82   24    6    1.50   10.74  0.1787E+06  0.1019E+06
   67   53    6    1.50   15.85  0.2638E+06  0.1128E+06
   80   24   26    1.50   11.41  0.1899E+06  0.9793E+05
   60   43   61    1.50   11.77  0.1959E+06  0.9769E+05
   69   25   62    1.50   10.67  0.1775E+06  0.8689E+05
   46   17   99    1.50   14.16  0.2357E+06  0.9588E+05
   72   11   61    1.52   17.34  0.2886E+06  0.2367E+05
   81    4   29    1.53   10.36  0.1725E+06  0.2364E+05
   65   46   29    1.56   10.06  0.1898E+06  0.2270E+05
   70   41   15    1.57   10.19  0.1922E+06  0.2281E+05
   79    6   15    1.60   13.10  0.3117E+06  0.2477E+05
   66   43    5    1.63   10.37  0.2468E+06  0.2294E+05
   70   17   35    1.68   10.96  0.3286E+06  0.2415E+05
   73   10   15    1.72   10.98  0.4036E+06  0.2356E+05
   60   40   26    1.72   10.32  0.3792E+06  0.2578E+05
   72   11   17    1.74   11.64  0.4278E+06  0.2619E+05
   66   25   19    1.79   11.89  0.5788E+06  0.2739E+05
   55   36   41    1.79   10.16  0.4942E+06  0.2967E+05
   69    7   22    1.80   11.06  0.5383E+06  0.2564E+05
   66   25   11    1.81   11.88  0.5781E+06  0.2771E+05
   61   20   33    1.88   12.54  0.8900E+06  0.3054E+05
   57   24   41    1.88   10.91  0.7746E+06  0.2842E+05
   37    4   81    1.88   10.15  0.7202E+06  0.3357E+05
   56   27    5    2.06   10.14  0.1854E+07  0.3569E+05
   44   39   29    2.06   10.09  0.1844E+07  0.3805E+05
   39   18   57    2.18   10.24  0.3885E+07  0.5573E+05
   44    4   48    2.30   12.38  0.4695E+07  0.6072E+05
   44   18   20    2.59   11.08  0.6982E+07  0.7839E+05
   41   21   26    2.59   11.09  0.6988E+07  0.7945E+05
   23    3   62    2.59   11.06  0.6971E+07  0.9154E+05
   34   32    2    2.75   13.44  0.1239E+08  0.1279E+06
   24   20   44    2.91   10.45  0.9641E+07  0.1017E+06
   35   10   25    3.17   14.39  0.2118E+08  0.2364E+06

 cpu time used by XSCALE       25.9 sec
 elapsed wall-clock time       28.1 sec

11 列目に数字とアスタリスク (xy.z*) が続く最後の 2 行目を抽出したいと思います。たとえば、この表で探している行には、11 列目 (CC(1/2)) の「23.2*」が含まれています。最後の行は total で始まる行になるため、最後から 2 番目の行が必要です。これは、単純な grep コマンドで抽出するのがはるかに簡単でした。

したがって、この場合のコードの期待される出力は、次の行を出力することです。

1.50      273432   20770     20893       99.4%     333.4%    342.1%   273340    0.80   346.9%    23.2*    -1    0.644   19495

別のファイルでは、11 番目の最後から 2 番目の値の後にアスタリスクが付いている場合、最初の列の 1.6 に対応する可能性があるため、予想される出力は次のようになります。

1.60      216910    5769      5769      100.0%     207.5%    214.7%   216910    1.72   210.4%    26.0*    -3    0.654    5204

テーブル内のアスタリスクのさまざまな位置についても同様です。

grep "[0-9, 0-9, ., 0-9*]" file.name やその他のさまざまな grep および fgrep などを使用してみましたが、これはかなり初めてで、取得できません仕事に。

どんな助けでも大歓迎です。

サム

4

4 に答える 4

1

その正規表現に一致する最後から 2 番目の行全体を出力するには、次のようにします。

awk '$11~/[0-9.]+\*/{secondlast=last;last=$0}END{print secondlast}' logFile
于 2013-06-05T14:46:34.240 に答える
1

GNU シード

(更新されたスクリプト用)

sed -n '/LIMIT/,/=/{/^\s*\(\S*\s*\)\{10\}[0-9.-]*\*/H;x;s/^.*\n\(.*\n.*\)$/\1/;x;/=/{x;P;q}}' file

.. 出力は次のとおりです。

     1.50 273432 20770 20893 99.4% 333.4% 342.1% 273340 0.80 346.9% 23.2* -1 0.644 19495
于 2013-06-05T14:31:18.637 に答える
0

このワンライナーでそれができます:

$ awk '{if ($11 ~ /\*/) {i++; a[i]=$0}} END {print a[i -1]}' file
 1.50      274090   20781     20874       99.6%     333.7%    341.9%   274015    0.80   347.1%    24.8*     0    0.645   19516

説明

11 番目のフィールドa[]を含むすべての行を配列に追加します。*次に、最後ではなく前のものを印刷します。

アップデート

ログが非常に大きく、あちこちにアスタリスクが表示されるため、コードを次のように更新します。

$ awk '{if ($11 == /[0-9]*.[0-9]*\*/) {i++; a[i]=$0}} END {print a[i -1]}' a
     0.90           0       0    147505        0.0%     -99.9%    -99.9%        0  -99.00   -99.9%     0.0      0    0.000       0

そのため、NNN.XXX*フォーマットのある行を探します。

于 2013-06-05T09:54:58.460 に答える
0
awk '$11~/^[0-9.]+\*$/ {prev=val; val=$11+0} END {print prev}' log

$11 の値に 0 を追加して、文字列 "23.2*" を数値 23.2 に変換します。

代わりに、「最後から n 番目」と聞くと、次のように思います。

tac log | awk '$11~/^[0-9.]+\*$/ && ++n == 2 {print $11+0; exit}'
于 2013-06-05T13:14:32.120 に答える