そのため、私は Python と Pandas (およびプログラミング全般) に非常に慣れていませんが、一見単純な関数に問題があります。そこで、SQL クエリで取得したデータを使用して次のデータフレームを作成しました (SQL クエリを表示する必要がある場合は、お知らせください。貼り付けます)。
spydata = pd.DataFrame(row,columns=['date','ticker','close', 'iv1m', 'iv3m'])
tickerlist = unique(spydata[spydata['date'] == '2013-05-31'])
その後、既に保持されているデータを使用して、データフレームにいくつかの新しい列を作成する関数を作成しました。
def demean(arr):
arr['retlog'] = log(arr['close']/arr['close'].shift(1))
arr['10dvol'] = sqrt(252)*sqrt(pd.rolling_std(arr['ret'] , 10 ))
arr['60dvol'] = sqrt(252)*sqrt(pd.rolling_std(arr['ret'] , 10 ))
arr['90dvol'] = sqrt(252)*sqrt(pd.rolling_std(arr['ret'] , 10 ))
arr['1060rat'] = arr['10dvol']/arr['60dvol']
arr['1090rat'] = arr['10dvol']/arr['90dvol']
arr['60dis'] = (arr['1060rat'] - arr['1060rat'].mean())/arr['1060rat'].std()
arr['90dis'] = (arr['1090rat'] - arr['1090rat'].mean())/arr['1090rat'].std()
return arr
私が問題を抱えている唯一の部分は、関数の最初の行です:
arr['retlog'] = log(arr['close']/arr['close'].shift(1))
このコマンドを実行すると、エラーが発生します。
result = spydata.groupby(['ticker']).apply(demean)
エラー:
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-196-4a66225e12ea> in <module>()
----> 1 result = spydata.groupby(['ticker']).apply(demean)
2 results2 = result[result.date == result.date.max()]
3
C:\Python27\lib\site-packages\pandas-0.11.0-py2.7-win32.egg\pandas\core\groupby.pyc in apply(self, func, *args, **kwargs)
323 func = _intercept_function(func)
324 f = lambda g: func(g, *args, **kwargs)
--> 325 return self._python_apply_general(f)
326
327 def _python_apply_general(self, f):
C:\Python27\lib\site-packages\pandas-0.11.0-py2.7-win32.egg\pandas\core\groupby.pyc in _python_apply_general(self, f)
326
327 def _python_apply_general(self, f):
--> 328 keys, values, mutated = self.grouper.apply(f, self.obj, self.axis)
329
330 return self._wrap_applied_output(keys, values,
C:\Python27\lib\site-packages\pandas-0.11.0-py2.7-win32.egg\pandas\core\groupby.pyc in apply(self, f, data, axis, keep_internal)
632 # group might be modified
633 group_axes = _get_axes(group)
--> 634 res = f(group)
635 if not _is_indexed_like(res, group_axes):
636 mutated = True
C:\Python27\lib\site-packages\pandas-0.11.0-py2.7-win32.egg\pandas\core\groupby.pyc in <lambda>(g)
322 """
323 func = _intercept_function(func)
--> 324 f = lambda g: func(g, *args, **kwargs)
325 return self._python_apply_general(f)
326
<ipython-input-195-47b6faa3f43c> in demean(arr)
1 def demean(arr):
----> 2 arr['retlog'] = log(arr['close']/arr['close'].shift(1))
3 arr['10dvol'] = sqrt(252)*sqrt(pd.rolling_std(arr['ret'] , 10 ))
4 arr['60dvol'] = sqrt(252)*sqrt(pd.rolling_std(arr['ret'] , 10 ))
5 arr['90dvol'] = sqrt(252)*sqrt(pd.rolling_std(arr['ret'] , 10 ))
AttributeError: log
関数を np.log と math.log に変更しようとしましたが、その場合、エラーが発生します
TypeError: only length-1 arrays can be converted to Python scalars
これを調べてみましたが、直接適用できるものは見つかりませんでした。手がかりはありますか?