これは、3 番目の「列」が実際には行列である data.frame です。
pred.Alb <- structure(list(Age =
c(20, 30, 40, 50, 60, 70, 80, 20, 30, 40,
50, 60, 70, 80), Sex = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L,
2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("Male", "Female"),
class = "factor"),
pred = structure(c(4.34976914720261, 4.3165897157342, 4.2834102842658,
4.23952109360855, 4.15279286619591, 4.05535487959442, 3.95791689299294,
4.02417706540447, 4.05661037005163, 4.08904367469879, 4.0942071858864,
3.9902915232358, 3.85910606712565, 3.72792061101549, 4.37709246711838,
4.38914906337186, 4.40120565962535, 4.3964228776405, 4.32428258270227,
4.23530290952571, 4.14632323634915, 4.3, 4.3, 4.3, 4.28809523809524,
4.22857142857143, 4.15714285714286, 4.08571428571429, 4.59781730640631,
4.59910124381436, 4.60038518122242, 4.58132673532165, 4.48089875618564,
4.36012839374081, 4.23935803129598, 4.39298701298701, 4.39711229946524,
4.40123758594347, 4.39484310896076, 4.34636957813428, 4.28737628384687,
4.22838298955946), .Dim = c(14L, 3L), .Dimnames = list(c("1",
"2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12",
"13", "14"), c("tau= 0.10", "tau= 0.25", "tau= 0.50")))),
.Names = c("Age", "Sex", "pred"), out.attrs =
structure(list(dim = structure(c(7L, 2L), .Names = c("Age", "Sex")),
dimnames = structure(list(Age = c("Age=20",
"Age=30", "Age=40", "Age=50", "Age=60", "Age=70", "Age=80"),
Sex = c("Sex=Male", "Sex=Female")),
.Names = c("Age", "Sex"))),
.Names = c("dim", "dimnames")), row.names = c(NA, -14L),
class = "data.frame")
次のコードで作成されました。
require(rms) # also loads Hmisc
require(quantreg) # might also get loaded by rms
rqAlb10fit2 <- rq(BL_ALBUMIN ~ rcs(Age,3) *Sex , data=redBan,
tau= c(0.1, 0.25, 0.5) )
pred.Alb <- expand.grid(Age=seq(20,80,by=10), Sex=c("Male", "Female") )
pred.Alb$pred <- predict(rqAlb10fit2,
newdata=expand.grid(Age=seq(20,80,by=10), Sex=c("Male", "Female") ) )
性別とタウレベルによる予測の折れ線グラフが欲しいです。次の方法でポイント プロットを取得できます。
xyplot(pred~Age|Sex, data=pred.Alb, type="p")
type="l" を追加すると、 のさまざまなレベルを接続する線が前後に移動しtau
ました。
問題があるとは思えませんが、quantreg_4.96/rms_3.6-3/Hmisc_3.10-1 を使用して Mac 10.7.5 で実行しています。古典的なテーマの ggplot ソリューションを見せたい場合は、それでも構いません。ggplot2 が苦手で、Harrell の rms パッケージが格子に結合されているだけです。