0

最初に xml ドキュメントのインデックスを作成し、インデックス内の一意の用語の数を見つけるコードを lucene で作成しました。

n 個 (no.) の一意の用語があるとします。

次元 nXn の行列を生成したいのですが、ここで

m[i][j] = (co_occurrence value of terms (i, j))/ (occurrence value of term i)

項 (i, j) の共起 = no。i 番目の用語と j 番目の用語の両方が出現している文書のうち、用語 j の出現は No. 用語 j が出現しているドキュメントの。

私のコードは正常に動作しています。しかし、それは効率的ではありません。大号用。ファイルの、いいえ。用語の数は 2000 を超え、10 分以上かかります。

ここに co_occurence を見つけるための私のコードがあります -

int cooccurrence(IndexReader reader, String term_one, String term_two) throws IOException {

    int common_doc_no = 0, finaldocno_one = 0, finaldocno_two = 0;
    int termdocid_one[] = new int[6000];
    int termdocid_two[] = new int[6000];
    int first_docids[] = new int[6000];
    int second_docids[] = new int[6000];
    int k = 0;
    for (java.util.Iterator<String> it = reader.getFieldNames(
            FieldOption.ALL).iterator(); it.hasNext();) {
        String fieldname = (String) it.next();

        TermDocs t = reader.termDocs(new Term(fieldname, term_one));

        while (t.next()) {

            int x = t.doc();

            if (termdocid_one[x] != 1) {
                finaldocno_one++;
                first_docids[k] = x;
                k++;
            }
            termdocid_one[x] = 1;
        }

    }

    /*
     * System.out.println("value of finaldoc_one - " + finaldocno_one); for
     * (int i = 0; i < finaldocno_one; i++) { System.out.println("" +
     * first_docids[i]); }
     */
    k = 0;
    for (java.util.Iterator<String> it = reader.getFieldNames(
            FieldOption.ALL).iterator(); it.hasNext();) {
        String fieldname = (String) it.next();

        TermDocs t = reader.termDocs(new Term(fieldname, term_two));

        while (t.next()) {
            int x = t.doc();

            if (termdocid_two[x] != 1) {
                finaldocno_two++;
                second_docids[k] = x;
                k++;
            }
            termdocid_two[x] = 1;
        }

    }
    /*
     * System.out.println("value of finaldoc_two - " + finaldocno_two);
     * 
     * for (int i = 0; i < finaldocno_two; i++) { System.out.println("" +
     * second_docids[i]); }
     */
    int max;
    int search = 0;
    if (finaldocno_one > finaldocno_two) {
        max = finaldocno_one;
        search = 1;
    } else {
        max = finaldocno_two;
        search = 2;
    }

    if (search == 1) {
        for (int i = 0; i < max; i++) {
            if (termdocid_two[first_docids[i]] == 1)
                common_doc_no++;
        }
    } else if (search == 2) {
        for (int i = 0; i < max; i++) {
            if (termdocid_one[second_docids[i]] == 1)
                common_doc_no++;
        }
    }
    return common_doc_no;

}

知識行列の計算コード: -

void knowledge_matrix(double matrix[][], IndexReader reader, double avg_matrix[][]) throws IOException {

    ArrayList<String> unique_terms_array = new ArrayList<>();
    int totallength = unique_term_count(reader, unique_terms_array);
    int co_occur_matrix[][] = new int[totallength + 3][totallength + 3];
    double rowsum = 0;
    for (int i = 1; i <= totallength; i++) {
        rowsum = 0;
        for (int j = 1; j <= totallength; j++) {
            int co_occurence;
            int occurence = docno_single_term(reader,
                    unique_terms_array.get(j - 1));
            if (i > j) {
                co_occurence = co_occur_matrix[i][j];
            } else {
                co_occurence = cooccurrence(reader,
                        unique_terms_array.get(i - 1),
                        unique_terms_array.get(j - 1));
                co_occur_matrix[i][j] = co_occurence;
                co_occur_matrix[j][i] = co_occurence;
            }

            matrix[i][j] = (float) co_occurence / (float) occurence;
            rowsum += matrix[i][j];

            if (i > 1)

            {
                avg_matrix[i - 1][j] = matrix[i - 1][j] - matrix[i - 1][0];
            }
        }
        matrix[i][0] = rowsum / totallength;

    }

    for (int j = 1; j <= totallength; j++) {
        avg_matrix[totallength][j] = matrix[totallength][j]
                - matrix[totallength][0];
    }
}

誰かがそれを実装するための効率的な方法を提案してください。

4

1 に答える 1

0

forterm_one と term_two の検索処理を 1 つのループに入れることができると思います。そして、2 つのハッシュセットを使用して、見つけた docid を保存できます。そして、termOneSet.retainAll(termTwoSet)term_one と term_two の両方を含むドキュメントを取得するために使用します。

于 2013-06-17T07:23:50.797 に答える