参照用にC#でコードバージョンを追加するだけで、すでに回答されていることを知っています(単純化されたナップザックについては、「クラシック」ナップザックアルゴリズムを再帰的に解決するにはどうすればよいですか?):
バージョン 1.動的プログラミング (wiki に類似) を使用した解決 - ボトムアップ (表形式のアプローチ)
バージョン 2.動的プログラミングを使用して解決するが、上から下へ (メモ化 - 怠惰)
バージョン 3.再帰的 (重複部分問題または DP を使用できる最適な部分構造プロパティを使用しない再帰的ソリューションのみ)
バージョン 4.ブルート フォース (すべての組み合わせを通過)
参考文献: http://en.wikipedia.org/wiki/Knapsack_problem、「古典的な」ナップザック アルゴリズムを再帰的に解決するにはどうすればよいですか?
表形式 - DP - バージョン (O(n W) - 疑似多項式) - O(n W) メモリ - ボトムアップ
public int Knapsack_0_1_DP_Tabular_Bottom_Up(int[] weights, int[] values, int maxWeight)
{
this.ValidataInput_Knapsack_0_1(weights, values, maxWeight);
int[][] DP_Memoization_Max_Value_Cache = new int[values.Length + 1][];
for (int i = 0; i <= values.Length; i++)
{
DP_Memoization_Max_Value_Cache[i] = new int[maxWeight + 1];
for (int j = 0; j <= maxWeight; j++)
{
DP_Memoization_Max_Value_Cache[i][j] = 0; //yes, its default -
}
}
/// f(i, w) = f(i-1, w) if Wi > w
/// Or, max (f(i-1, w), f(i-1, w-Wi) + Vi
/// Or 0 if i < 0
for(int i = 1; i<=values.Length; i++)
{
for(int w = 1; w <= maxWeight; w++)
{
//below code can be refined - intentional as i just want it
//look similar to other 2 versions (top_to_bottom_momoization
//and recursive_without_resuing_subproblem_solution
int maxValueWithoutIncludingCurrentItem =
DP_Memoization_Max_Value_Cache[i - 1][w];
if (weights[i - 1] > w)
{
DP_Memoization_Max_Value_Cache[i][w] = maxValueWithoutIncludingCurrentItem;
}
else
{
int maxValueByIncludingCurrentItem =
DP_Memoization_Max_Value_Cache[i - 1][w - weights[i - 1]]
+ values[i-1];
int overAllMax = maxValueWithoutIncludingCurrentItem;
if(maxValueByIncludingCurrentItem > overAllMax)
{
overAllMax = maxValueByIncludingCurrentItem;
}
DP_Memoization_Max_Value_Cache[i][w] = overAllMax;
}
}
}
return DP_Memoization_Max_Value_Cache[values.Length][maxWeight];
}
DP - メモ化 - 上から下へ - 遅延評価
/// <summary>
/// f(i, w) = f(i-1, w) if Wi > w
/// Or, max (f(i-1, w), f(i-1, w-Wi) + Vi
/// Or 0 if i < 0
/// </summary>
int Knapsack_0_1_DP_Memoization_Top_To_Bottom_Lazy_Recursive(int[] weights, int[] values,
int index, int weight, int?[][] DP_Memoization_Max_Value_Cache)
{
if (index < 0)
{
return 0;
}
Debug.Assert(weight >= 0);
#if DEBUG
if ((index == 0) || (weight == 0))
{
Debug.Assert(DP_Memoization_Max_Value_Cache[index][weight] == 0);
}
#endif
//value is cached, so return
if(DP_Memoization_Max_Value_Cache[index][weight] != null)
{
return DP_Memoization_Max_Value_Cache[index][weight].Value;
}
Debug.Assert(index > 0);
Debug.Assert(weight > 0);
int maxValueWithoutIncludingCurrentItem = this.Knapsack_0_1_DP_Memoization_Top_To_Bottom_Lazy_Recursive
(weights, values, index - 1, weight, DP_Memoization_Max_Value_Cache);
if (weights[index-1] > weight)
{
DP_Memoization_Max_Value_Cache[index][weight] = maxValueWithoutIncludingCurrentItem;
//current item weight is more, so we cant include - so, just return
return maxValueWithoutIncludingCurrentItem;
}
int overallMaxValue = maxValueWithoutIncludingCurrentItem;
int maxValueIncludingCurrentItem = this.Knapsack_0_1_DP_Memoization_Top_To_Bottom_Lazy_Recursive
(weights, values, index - 1, weight - weights[index-1],
DP_Memoization_Max_Value_Cache) + values[index - 1];
if(maxValueIncludingCurrentItem > overallMaxValue)
{
overallMaxValue = maxValueIncludingCurrentItem;
}
DP_Memoization_Max_Value_Cache[index][weight] = overallMaxValue;
return overallMaxValue;
}
および呼び出す public メソッド (呼び出し元の詳細については、以下のユニット テストを参照してください)
public int Knapsack_0_1_DP_Tabular_Bottom_Up(int[] weights, int[] values, int maxWeight)
{
this.ValidataInput_Knapsack_0_1(weights, values, maxWeight);
int[][] DP_Memoization_Max_Value_Cache = new int[values.Length + 1][];
for (int i = 0; i <= values.Length; i++)
{
DP_Memoization_Max_Value_Cache[i] = new int[maxWeight + 1];
for (int j = 0; j <= maxWeight; j++)
{
DP_Memoization_Max_Value_Cache[i][j] = 0; //yes, its default -
}
}
/// f(i, w) = f(i-1, w) if Wi > w
/// Or, max (f(i-1, w), f(i-1, w-Wi) + Vi
/// Or 0 if i < 0
for(int i = 1; i<=values.Length; i++)
{
for(int w = 1; w <= maxWeight; w++)
{
//below code can be refined - intentional as i just want it
//look similar to other 2 versions (top_to_bottom_momoization
//and recursive_without_resuing_subproblem_solution
int maxValueWithoutIncludingCurrentItem =
DP_Memoization_Max_Value_Cache[i - 1][w];
if (weights[i - 1] > w)
{
DP_Memoization_Max_Value_Cache[i][w] = maxValueWithoutIncludingCurrentItem;
}
else
{
int maxValueByIncludingCurrentItem =
DP_Memoization_Max_Value_Cache[i - 1][w - weights[i - 1]]
+ values[i-1];
int overAllMax = maxValueWithoutIncludingCurrentItem;
if(maxValueByIncludingCurrentItem > overAllMax)
{
overAllMax = maxValueByIncludingCurrentItem;
}
DP_Memoization_Max_Value_Cache[i][w] = overAllMax;
}
}
}
return DP_Memoization_Max_Value_Cache[values.Length][maxWeight];
}
再帰 - DP サブ問題あり - ただし、重複するサブ問題を再利用しない (これは、再帰バージョンを DP 上から下 (メモ化バージョン) に変更する方が簡単であることを示しているはずです)
public int Knapsack_0_1_OverlappedSubPromblems_OptimalSubStructure(int[] weights, int[] values, int maxWeight)
{
this.ValidataInput_Knapsack_0_1(weights, values, maxWeight);
int v = this.Knapsack_0_1_OverlappedSubPromblems_OptimalSubStructure_Recursive(weights, values, index: weights.Length-1, weight: maxWeight);
return v;
}
/// <summary>
/// f(i, w) = f(i-1, w) if Wi > w
/// Or, max (f(i-1, w), f(i-1, w-Wi) + Vi
/// Or 0 if i < 0
/// </summary>
int Knapsack_0_1_OverlappedSubPromblems_OptimalSubStructure_Recursive(int[] weights, int[] values, int index, int weight)
{
if (index < 0)
{
return 0;
}
Debug.Assert(weight >= 0);
int maxValueWithoutIncludingCurrentItem = this.Knapsack_0_1_OverlappedSubPromblems_OptimalSubStructure_Recursive(weights,
values, index - 1, weight);
if(weights[index] > weight)
{
//current item weight is more, so we cant include - so, just return
return maxValueWithoutIncludingCurrentItem;
}
int overallMaxValue = maxValueWithoutIncludingCurrentItem;
int maxValueIncludingCurrentItem = this.Knapsack_0_1_OverlappedSubPromblems_OptimalSubStructure_Recursive(weights,
values, index - 1, weight - weights[index]) + values[index];
if(maxValueIncludingCurrentItem > overallMaxValue)
{
overallMaxValue = maxValueIncludingCurrentItem;
}
return overallMaxValue;
}
ブルートフォース(すべての組み合わせを通過)
private int _maxValue = int.MinValue;
private int[] _valueIndices = null;
public void Knapsack_0_1_BruteForce_2_Power_N(int[] weights, int[] values, int maxWeight)
{
this.ValidataInput_Knapsack_0_1(weights, values, maxWeight);
this._maxValue = int.MinValue;
this._valueIndices = null;
this.Knapsack_0_1_BruteForce_2_Power_N_Rcursive(weights, values, maxWeight, 0, 0, 0, new List<int>());
}
private void Knapsack_0_1_BruteForce_2_Power_N_Rcursive(int[] weights, int[] values, int maxWeight, int index, int currentWeight, int currentValue, List<int> currentValueIndices)
{
if(currentWeight > maxWeight)
{
return;
}
if(currentValue > this._maxValue)
{
this._maxValue = currentValue;
this._valueIndices = currentValueIndices.ToArray();
}
if(index == weights.Length)
{
return;
}
Debug.Assert(index < weights.Length);
var w = weights[index];
var v = values[index];
//see if the current value, conributes to max value
currentValueIndices.Add(index);
Knapsack_0_1_BruteForce_2_Power_N_Rcursive(weights, values, maxWeight, index + 1, currentWeight + w,
currentValue + v, currentValueIndices);
currentValueIndices.Remove(index);
//see if current value, does not contribute to max value
Knapsack_0_1_BruteForce_2_Power_N_Rcursive(weights, values, maxWeight, index + 1, currentWeight, currentValue,
currentValueIndices);
}
単体テスト 1
[TestMethod]
public void Knapsack_0_1_Tests()
{
int[] benefits = new int[] { 60, 100, 120 };
int[] weights = new int[] { 10, 20, 30 };
this.Knapsack_0_1_BruteForce_2_Power_N(weights, values: benefits, maxWeight: 50);
Assert.IsTrue(this._maxValue == 220);
int v = this.Knapsack_0_1_OverlappedSubPromblems_OptimalSubStructure(weights,
values: benefits, maxWeight: 50);
Assert.IsTrue(v == 220);
v = this.Knapsack_0_1_DP_Memoization_Top_To_Bottom_Lazy(weights,
values: benefits, maxWeight: 50);
Assert.IsTrue(v == 220);
v = this.Knapsack_0_1_DP_Tabular_Bottom_Up(weights,
values: benefits, maxWeight: 50);
Assert.IsTrue(v == 220);
benefits = new int[] { 3, 4, 5, 8, 10 };
weights = new int[] { 2, 3, 4, 5, 9 };
this.Knapsack_0_1_BruteForce_2_Power_N(weights, values: benefits, maxWeight: 20);
Assert.IsTrue(this._maxValue == 26);
v = this.Knapsack_0_1_OverlappedSubPromblems_OptimalSubStructure(weights, values: benefits,
maxWeight: 20);
Assert.IsTrue(v == 26);
v = this.Knapsack_0_1_DP_Memoization_Top_To_Bottom_Lazy(weights,
values: benefits, maxWeight: 20);
Assert.IsTrue(v == 26);
v = this.Knapsack_0_1_DP_Tabular_Bottom_Up(weights,
values: benefits, maxWeight: 20);
Assert.IsTrue(v == 26);
benefits = new int[] { 3, 4, 5, 6};
weights = new int[] { 2, 3, 4, 5 };
this.Knapsack_0_1_BruteForce_2_Power_N(weights, values: benefits, maxWeight: 5);
Assert.IsTrue(this._maxValue == 7);
v = this.Knapsack_0_1_OverlappedSubPromblems_OptimalSubStructure(weights, values: benefits,
maxWeight: 5);
Assert.IsTrue(v == 7);
v = this.Knapsack_0_1_DP_Memoization_Top_To_Bottom_Lazy(weights,
values: benefits, maxWeight: 5);
Assert.IsTrue(v == 7);
v = this.Knapsack_0_1_DP_Tabular_Bottom_Up(weights,
values: benefits, maxWeight: 5);
Assert.IsTrue(v == 7);
}
単体テスト 2
[TestMethod]
public void Knapsack_0_1_Brute_Force_Tests()
{
int[] benefits = new int[] { 60, 100, 120 };
int[] weights = new int[] { 10, 20, 30 };
this.Knapsack_0_1_BruteForce_2_Power_N(weights, values: benefits, maxWeight: 50);
Assert.IsTrue(this._maxValue == 220);
Assert.IsTrue(this._valueIndices.Contains(1));
Assert.IsTrue(this._valueIndices.Contains(2));
Assert.IsTrue(this._valueIndices.Length == 2);
this._maxValue = int.MinValue;
this._valueIndices = null;
benefits = new int[] { 3, 4, 5, 8, 10 };
weights = new int[] { 2, 3, 4, 5, 9 };
this.Knapsack_0_1_BruteForce_2_Power_N(weights, values: benefits, maxWeight: 20);
Assert.IsTrue(this._maxValue == 26);
Assert.IsTrue(this._valueIndices.Contains(0));
Assert.IsTrue(this._valueIndices.Contains(2));
Assert.IsTrue(this._valueIndices.Contains(3));
Assert.IsTrue(this._valueIndices.Contains(4));
Assert.IsTrue(this._valueIndices.Length == 4);
}