Reduceはあなたが望むものかもしれません:
あなたのシンボルグループのいくつかをA、B、Cに統合しました(必要ではなく、画面に収まるようにします)
Reduce[{dist^2 == xstep^2 + (A)^2 &&
dist^2 == (C - NC xstep)^2 + (B - dist/2)^2 , {xstep, dist}]]
これにより、一連の条件でかなり大きな出力が生成されます。
さまざまな縮退ケースを排除する既知の制約がある場合は、指定するのに役立ちます(これらは作成しました)
$Assumptions = B != 0 && B^2 != 3 C^2 && NC^2 != 3/4;
$Assumptions は Simplify で使用されますが、Reduce 式に明示的に追加する必要があります。
Simplify[Reduce[{dist^2 == xstep^2 + (A)^2 &&
dist^2 == (C - NC xstep)^2 + (B - dist/2)^2 && $Assumptions }, {xstep, dist}]]
出力.. あまりにも厄介ではない.. ルート式には、求める係数が含まれています..
(xstep ==
Root[9 A^4 - 40 A^2 B^2 + 16 B^4 - 24 A^2 C^2 + 32 B^2 C^2 +
16 C^4 + (48 A^2 C NC - 64 B^2 C NC -
64 C^3 NC) #1 + (18 A^2 - 40 B^2 - 24 C^2 - 24 A^2 NC^2 +
32 B^2 NC^2 + 96 C^2 NC^2) #1^2 + (48 C NC -
64 C NC^3) #1^3 + (9 - 24 NC^2 + 16 NC^4) #1^4 &, 1] ||
xstep ==
Root[9 A^4 - 40 A^2 B^2 + 16 B^4 - 24 A^2 C^2 + 32 B^2 C^2 +
16 C^4 + (48 A^2 C NC - 64 B^2 C NC -
64 C^3 NC) #1 + (18 A^2 - 40 B^2 - 24 C^2 - 24 A^2 NC^2 +
32 B^2 NC^2 + 96 C^2 NC^2) #1^2 + (48 C NC -
64 C NC^3) #1^3 + (9 - 24 NC^2 + 16 NC^4) #1^4 &, 2] ||
xstep ==
Root[9 A^4 - 40 A^2 B^2 + 16 B^4 - 24 A^2 C^2 + 32 B^2 C^2 +
16 C^4 + (48 A^2 C NC - 64 B^2 C NC -
64 C^3 NC) #1 + (18 A^2 - 40 B^2 - 24 C^2 - 24 A^2 NC^2 +
32 B^2 NC^2 + 96 C^2 NC^2) #1^2 + (48 C NC -
64 C NC^3) #1^3 + (9 - 24 NC^2 + 16 NC^4) #1^4 &, 3] ||
xstep ==
Root[9 A^4 - 40 A^2 B^2 + 16 B^4 - 24 A^2 C^2 + 32 B^2 C^2 +
16 C^4 + (48 A^2 C NC - 64 B^2 C NC -
64 C^3 NC) #1 + (18 A^2 - 40 B^2 - 24 C^2 - 24 A^2 NC^2 +
32 B^2 NC^2 + 96 C^2 NC^2) #1^2 + (48 C NC -
64 C NC^3) #1^3 + (9 - 24 NC^2 + 16 NC^4) #1^4 &, 4]) &&
3 A^2 + 4 B dist + xstep (8 C NC + 3 xstep) ==
4 (B^2 + C^2 + NC^2 xstep^2)