私はscikit-learnが初めてです。私は前処理を使用しようとしています。OneHotEncoder を使用して、トレーニング データとテスト データをエンコードします。エンコード後、そのデータを使用してランダムフォレスト分類子をトレーニングしようとしました。しかし、フィッティング時に次のエラーが発生します。(エラートレースはこちら)
99 model.fit(X_train, y_train)
100 preds = model.predict_proba(X_cv)[:, 1]
101
C:\Python27\lib\site-packages\sklearn\ensemble\forest.pyc in fit(self, X, y, sample_weight)
288
289 # Precompute some data
--> 290 X, y = check_arrays(X, y, sparse_format="dense")
291 if (getattr(X, "dtype", None) != DTYPE or
292 X.ndim != 2 or
C:\Python27\lib\site-packages\sklearn\utils\validation.pyc in check_arrays(*arrays, **options)
200 array = array.tocsc()
201 elif sparse_format == 'dense':
--> 202 raise TypeError('A sparse matrix was passed, but dense '
203 'data is required. Use X.toarray() to '
204 'convert to a dense numpy array.')
TypeError: A sparse matrix was passed, but dense data is required. Use X.toarray() to convert to a dense numpy array.
X.toarray() と X.todense() を使用して疎行列を密行列に変換しようとしましたが、それを行うと、次のエラー トレースが表示されます。
99 model.fit(X_train.toarray(), y_train)
100 preds = model.predict_proba(X_cv)[:, 1]
101
C:\Python27\lib\site-packages\scipy\sparse\compressed.pyc in toarray(self)
548
549 def toarray(self):
--> 550 return self.tocoo(copy=False).toarray()
551
552 ##############################################################
C:\Python27\lib\site-packages\scipy\sparse\coo.pyc in toarray(self)
236
237 def toarray(self):
--> 238 B = np.zeros(self.shape, dtype=self.dtype)
239 M,N = self.shape
240 coo_todense(M, N, self.nnz, self.row, self.col, self.data, B.ravel())
ValueError: array is too big.
誰でもこれを修正するのを手伝ってもらえますか?
ありがとうございました