23

次のように、1パラメーター関数のC11ジェネリックを理解しています:(ここから)

#define acos(X) _Generic((X), \
    long double complex: cacosl, \
    double complex: cacos, \
    float complex: cacosf, \
    long double: acosl, \
    float: acosf, \
    default: acos \
    )(X)

_Genericしかし、引数が 2 つある関数では面倒なようです。 への呼び出しをネストする必要があります。同じブログからの抜粋:

#define pow(x, y) _Generic((x), \
long double complex: cpowl, \

double complex: _Generic((y), \
long double complex: cpowl, \
default: cpow), \

float complex: _Generic((y), \
long double complex: cpowl, \
double complex: cpow, \
default: cpowf), \

long double: _Generic((y), \
long double complex: cpowl, \
double complex: cpow, \
float complex: cpowf, \
default: powl), \

default: _Generic((y), \
long double complex: cpowl, \
double complex: cpow, \
float complex: cpowf, \
long double: powl, \
default: pow), \

float: _Generic((y), \
long double complex: cpowl, \
double complex: cpow, \
float complex: cpowf, \
long double: powl, \
float: powf, \
default: pow) \
)(x, y)

たとえば、次のように、マルチパラメータ関数に対してより人間が読めるジェネリックを作成する方法はありますか?

#define plop(a,b) _Generic((a,b), \
      (int,long): plopii, \
      (double,short int): plopdd)(a,b)

返信ありがとうございます。基本的なアイデアは、 のマクロ ラッパーを持つことです_Generic

4

5 に答える 5

18

の制御式が評価されないことを考えると_Generic、適切な型結合を行う算術演算を適用し、結果をオンにすることをお勧めします。したがって:

#define OP(x, y) _Generic((x) + (y), \
    long double complex: LDC_OP(x, y), \
    double complex: DC_OP(x, y), \
    ... )

もちろん、これは特定のケースでのみ機能しますが、「折りたたみ」タイプが役に立たない場合はいつでも展開できます。char *(これにより、たとえば、リンクされた例のように array-N-of-char vsを処理できます。printnl次に、結合された型がintである場合、戻って and を確認できますcharshort)

于 2013-06-25T17:31:51.843 に答える
15

C にはタプルがないので、独自のタプルを作成しましょう。

typedef struct {int _;} T_double_double;
typedef struct {int _;} T_double_int;
typedef struct {int _;} T_int_double;
typedef struct {int _;} T_int_int;

typedef struct { T_double_double Double; T_double_int Int;} T_double;
typedef struct { T_int_double Double;    T_int_int    Int;} T_int;

#define typeof1(X)       \
_Generic( (X),            \
    int:    (T_int){{0}},  \
    double: (T_double){{0}} )

#define typeof2(X, Y)      \
_Generic( (Y),              \
    int:    typeof1(X).Int,  \
    double: typeof1(X).Double )

これはクライアント コードです。

#include <stdio.h>
#include "generics.h"

#define typename(X, Y)               \
_Generic( typeof2(X, Y),              \
    T_int_int: "int, int\n",           \
    T_int_double: "int, double\n",      \
    T_double_double: "double, double\n", \
    T_double_int: "double, int\n",        \
    default: "Something else\n"            )

int main() {
    printf(typename(1, 2));
    printf(typename(1, 2.0));
    printf(typename(1.0, 2.0));
    printf(typename(1.0, 2));
    return 0;
}

そしてそれは動作します:

~/workspace$ clang -Wall -std=c11 temp.c
~/workspace$ ./a.out 
int, int
int, double
double, double
double, int

はい、指数関数的なサイズでコードを記述する必要があります。しかし、少なくとも再利用できるようになります。

于 2013-06-25T18:29:03.360 に答える
6

これは、直線的な量のコードを手動で記述するだけで済むバージョンです。これらはすべて、目前の問題に直接関連しています (手動で定義された型の大きなツリーはありません)。まず、使用例:

#include <stdio.h>

// implementations of print
void print_ii(int a, int b) { printf("int, int\n"); }
void print_id(int a, double b) { printf("int, double\n"); }
void print_di(double a, int b) { printf("double, int\n"); }
void print_dd(double a, double b) { printf("double, double\n"); }
void print_iii(int a, int b, int c) { printf("int, int, int\n"); }
void print_default(void) { printf("unknown arguments\n"); }

// declare as overloaded
#define print(...) OVERLOAD(print, (__VA_ARGS__), \
    (print_ii, (int, int)), \
    (print_id, (int, double)), \
    (print_di, (double, int)), \
    (print_dd, (double, double)), \
    (print_iii, (int, int, int)) \
)


#define OVERLOAD_ARG_TYPES (int, double)
#define OVERLOAD_FUNCTIONS (print)


#include "activate-overloads.h"


int main(void) {
    print(44, 47);   // prints "int, int"
    print(4.4, 47);  // prints "double, int"
    print(1, 2, 3);  // prints "int, int, int"
    print("");       // prints "unknown arguments"
}

これはおそらく、このために得られる最も軽い構文です。

欠点/制限について:

  • リスト内のオーバーロードされた関数のすべての引数の型を宣言する必要がありますOVERLOADED_ARG_TYPES
  • 引数の型は1 語の名前でなければなりません (typedef のおかげで大きな問題ではありませんが、覚えておく必要があります)。
  • これにより、実際の呼び出しサイトで巨大なコードが肥大化します (ただし、コンパイラが最適化して取り除くのは簡単ですが、GCC は-O1.
  • 大規模な PP ライブラリに依存しています (以下を参照)。

X_default引数を取らない関数も定義する必要があります。これをオーバーロード宣言ブロックに追加しないでください。これは、一致しない場合に使用されます (直接呼び出したい場合は、複合リテラルの匿名構造体など、一致しない値でオーバーロードを呼び出します)。

ここにありactivate-overloads.hます:

// activate-overloads.h
#include <order/interpreter.h>

#define ORDER_PP_DEF_8dispatch_overload ORDER_PP_FN( \
8fn(8N, 8V, \
    8do( \
        8print( 8cat(8(static inline int DISPATCH_OVER_), 8N) ((int ac, int av[]) { return ) ), \
        8seq_for_each_with_idx( \
            8fn(8I, 8T, \
                8let( (8S, 8tuple_to_seq(8tuple_at_1(8T))), \
                    8print( 8lparen (ac==) 8to_lit(8seq_size(8S)) ), \
                    8seq_for_each_with_idx(8fn(8I, 8T, 8print( (&&av[) 8I (]==) 8cat(8(K_), 8T) )), 0, 8S), \
                    8print( 8rparen (?) 8I (:) ) \
                )), \
            1, 8V), \
        8print( ( -1; }) ) \
    ) ))

#define TYPES_TO_ENUMS(TS) ORDER_PP ( \
    8do( \
        8seq_for_each(8fn(8T, 8print( 8T (:) 8cat(8(K_), 8T) (,) )), \
                      8tuple_to_seq(8(TS))), \
        8print( (default: -1) ) \
    ) \
)
#define ENUMERATE_TYPES(TS) enum OVERLOAD_TYPEK { ORDER_PP ( \
    8seq_for_each(8fn(8V, 8print( 8V (,) )), 8types_to_vals(8tuple_to_seq(8(TS)))) \
) };
#define ORDER_PP_DEF_8types_to_vals ORDER_PP_FN( \
8fn(8S, 8seq_map(8fn(8T, 8cat(8(K_), 8T)), 8S)) )


ENUMERATE_TYPES(OVERLOAD_ARG_TYPES)
#define OVER_ARG_TYPE(V) _Generic((V), TYPES_TO_ENUMS(OVERLOAD_ARG_TYPES) )

#define OVERLOAD
ORDER_PP (
    8seq_for_each(
        8fn(8F,
            8lets( (8D, 8expand(8adjoin( 8F, 8(()) )))
                   (8O, 8seq_drop(2, 8tuple_to_seq(8D))),
                8dispatch_overload(8F, 8O) )),
        8tuple_to_seq(8(OVERLOAD_FUNCTIONS))
    )
)
#undef OVERLOAD

#define OVERLOAD(N, ARGS, ...) ORDER_PP ( \
    8do( \
        8print(8lparen), \
        8seq_for_each_with_idx( \
            8fn(8I, 8T, \
                8lets( (8S, 8tuple_to_seq(8tuple_at_1(8T))) \
                       (8R, 8tuple_to_seq(8(ARGS))) \
                       (8N, 8tuple_at_0(8T)), \
                    8if(8equal(8seq_size(8S), 8seq_size(8R)), \
                        8do( \
                            8print( 8lparen (DISPATCH_OVER_##N) 8lparen 8to_lit(8seq_size(8R)) (,(int[]){) ), \
                            8seq_for_each(8fn(8A, 8print( (OVER_ARG_TYPE) 8lparen 8A 8rparen (,) )), 8R), \
                            8print( (-1}) 8rparen (==) 8I 8rparen (?) 8N 8lparen ), \
                            8let( (8P, 8fn(8A, 8T, \
                                           8print( (_Generic) 8lparen 8lparen 8A 8rparen (,) 8T (:) 8A (,default:*) 8lparen 8T (*) 8rparen (0) 8rparen ) \
                                           )), \
                                8ap(8P, 8seq_head(8R), 8seq_head(8S)), \
                                8seq_pair_with(8fn(8A, 8T, 8do(8print((,)), 8ap(8P, 8A, 8T))), 8seq_tail(8R), 8seq_tail(8S)) \
                            ), \
                            8print( 8rparen (:) ) \
                        ), \
                        8print(( )) ) \
                )), \
            1, 8tuple_to_seq(8((__VA_ARGS__))) \
        ), \
        8print( 8cat(8(N), 8(_default)) (()) 8rparen) \
    ) \
)

これには、Vesa K による優れたOrder プリプロセッサ ライブラリが必要です。

実際の動作:OVERLOAD_ARG_TYPES宣言は、定数として使用されているすべての引数の型をリストする列挙型を作成するために使用されます。オーバーロードされた名前へのすべての呼び出しは、呼び出し元コードで、(正しい引数番号の) すべての実装間でディスパッチする大きな 3 項演算に置き換えることができます。ディスパッチ_Genericは、引数の型から列挙値を生成し、これらを配列に入れ、自動生成されたディスパッチャー関数がその型の組み合わせの ID (元のブロック内の位置) を返すようにすることによって機能します。ID が一致すると、関数が呼び出されます。引数の型が間違っている場合、実装への未使用の呼び出しに対してダミー値が生成され、型の不一致が回避されます。

技術的には、これには「ランタイム」ディスパッチが含まれますが、すべてのタイプ ID は定数であり、ディスパッチャー関数はstatic inlineであるため、必要な呼び出しを除いて、コンパイラーが最適化するのは簡単なはずです (GCC は実際にすべてを最適化します)。 .

これは、以前にここに投稿された手法を改良したものです(同じ考え方で、現在はきれいで超軽量の構文を使用しています)。

于 2014-09-07T22:50:37.650 に答える
3

ああ、そうか…ブースト プリプロセッサ ライブラリ (C99 プリプロセッサ準拠) を使用したマクロ ソリューションの始まりです。

アイデアは、任意の数の引数に対してネストされたジェネリック選択を記述できるジェネリック構文を提供することでした。「単純」に保つために、選択する式は、同じレベルの選択にあるすべての要素で同じです (別の構文を定義して、レベルの各選択の制御式を個別に変更できます..)。


OPからのこの例

#define plop(a,b) _Generic((a,b), \
  (int,long): plopii, \
  (double,short int): plopdd)(a,b)

になる

#define plop(a,b)                  \
  MULT_GENERIC((a,b),              \
    (int, (long, plopii)),         \
    (double, (short int, plopdd))  \
  )(a,b)

私はそれを少し変更して次のようなものにすることができると思いますが:

#define plop(a,b)                  \
  MULT_GENERIC((a,b),              \
    (int, long: plopii),           \
    (double, short int: plopdd)    \
  )(a,b)

次の 3 つのパラメーターに展開できます。

#define plop(a,b,c)                                \
  MULT_GENERIC((a,b,c),                            \
    (int, (double, long: plopidl, int: plopidi)),  \
    (double, (short int, long: plopdsl))           \
  )(a,b)

さらなるコメント:OPの構文も同様に実行できると思いますが、可能なすべての2番目の引数に対して最初の引数を繰り返す必要があるため、柔軟性がありません。

#define plop(a,b) _Generic((a,b), \
  (int,long): plopii, \
  (int,double): plobid \
  (double,short int): plopdd)(a,b)

私の構文でのOPの例。各タイプを具体的に指定する必要があり、この場合は異なる最初のタイプに対して2番目のタイプを数回指定する必要があるため、ここではあまり得られないことに注意してください。

#define pow(x, y) MULT_GENERIC(                        \
        (x, y),                                        \
        (long double complex, (default, cpowl)         \
        ),                                             \
        (double complex, (long double complex, cpowl)  \
                       , (default, cpow)               \
        ),                                             \
        (float complex, (long double complex, cpowl)   \
                      , (double complex, cpow)         \
                      , (default, cpowf)               \
        ),                                             \
        (long double, (long double complex, cpowl)     \
                    , (double complex, cpow)           \
                    , (float complex, cpowf)           \
                    , (default, powl)                  \
        ),                                             \
        (default, (long double complex, cpowl)         \
                , (double complex, cpow)               \
                , (float complex, cpowf)               \
                , (long double, powl)                  \
                , (default, pow)                       \
         ),                                            \
         (float, (long double complex, cpowl)          \
               , (double complex, cpow)                \
               , (float complex, cpowf)                \
               , (long double, powl)                   \
               , (float, powf)                         \
               , (default, pow)                        \
         )                                             \
    )                                                  \
    (x, y)

pow(x, y)

これは次のように解決されます。

_Generic( (x), long double complex : _Generic( (y), default : cpowl ) , double complex : _Generic( (y), long double complex : cpowl , default : cpow ) , float complex : _Generic( (y), long double complex : cpowl , double complex : cpow , default : cpowf ) , long double : _Generic( (y), long double complex : cpowl , double complex : cpow , float complex : cpowf , default : powl ) , default : _Generic( (y), long double complex : cpowl , double complex : cpow , float complex : cpowf , long double : powl , default : pow ) , float : _Generic( (y), long double complex : cpowl , double complex : cpow , float complex : cpowf , long double : powl , float : powf , default : pow ) ) (x, y)

つまり、再フォーマットされます:

_Generic((x),
  long double complex: _Generic((y), default: cpowl)
, double complex: _Generic((y),
                             long double complex: cpowl
                           , default: cpow)
, float complex: _Generic((y),
                            long double complex: cpowl
                          , double complex: cpow
                          , default: cpowf)
, long double: _Generic((y),
                          long double complex: cpowl
                        , double complex: cpow
                        , float complex: cpowf
                        , default: powl)
, default: _Generic((y),
                      long double complex: cpowl
                    , double complex: cpow
                    , float complex: cpowf
                    , long double: powl
                    , default: pow)
, float: _Generic((y)
                  , long double complex: cpowl
                  , double complex: cpow
                  , float complex: cpowf
                  , long double: powl
                  , float : powf
                  , default: pow)
)
(x, y)

再帰的な性質のため、マクロのコピーを導入する必要がありました。このソリューションもクリーンアップが必要です (私は少し疲れています)。マクロ:

#include <boost/preprocessor.hpp>

#define MULT_GENERIC_GET_ASSOC_SEQ(DATA_TUPLE) \
    BOOST_PP_TUPLE_ELEM(2, DATA_TUPLE)

#define MULT_GENERIC_NTH_ASSOC_TUPLE(N, DATA_TUPLE) \
    BOOST_PP_SEQ_ELEM( N, MULT_GENERIC_GET_ASSOC_SEQ(DATA_TUPLE) )

#define MULT_GENERIC_GET_TYPENAME(N, DATA_TUPLE) \
    BOOST_PP_TUPLE_ELEM(0, MULT_GENERIC_NTH_ASSOC_TUPLE(N, DATA_TUPLE))

#define MULT_GENERIC_GET_EXPR( N, DATA_TUPLE ) \
    BOOST_PP_TUPLE_ELEM(1, MULT_GENERIC_NTH_ASSOC_TUPLE(N, DATA_TUPLE))




#define MULT_GENERIC_LEVEL_REP1(z, N, DATA_TUPLE) \
    MULT_GENERIC_GET_TYPENAME( N, DATA_TUPLE ) \
    : \
    BOOST_PP_TUPLE_ELEM(1, DATA_TUPLE) /*LEVEL_MACRO*/ (       \
          BOOST_PP_TUPLE_ELEM(0, DATA_TUPLE) /*SEL_EXPR_SEQ*/    \
        , BOOST_PP_SEQ_POP_FRONT( BOOST_PP_TUPLE_TO_SEQ(MULT_GENERIC_NTH_ASSOC_TUPLE(N, DATA_TUPLE)) )    \
        )

#define MULT_GENERIC_LEVEL1(SEL_EXPR_SEQ, LEVEL_MACRO, ASSOC_SEQ) \
    _Generic(                   \
        (BOOST_PP_SEQ_HEAD(SEL_EXPR_SEQ)),                   \
        BOOST_PP_ENUM( BOOST_PP_SEQ_SIZE(ASSOC_SEQ), MULT_GENERIC_LEVEL_REP1, (BOOST_PP_SEQ_POP_FRONT(SEL_EXPR_SEQ), LEVEL_MACRO, ASSOC_SEQ) ) \
    )

#define MULT_GENERIC_LEVEL_REP2(z, N, DATA_TUPLE) \
    MULT_GENERIC_GET_TYPENAME( N, DATA_TUPLE ) \
    : \
    BOOST_PP_TUPLE_ELEM(1, DATA_TUPLE) /*LEVEL_MACRO*/ (       \
          BOOST_PP_TUPLE_ELEM(0, DATA_TUPLE) /*SEL_EXPR_SEQ*/    \
        , BOOST_PP_SEQ_POP_FRONT( BOOST_PP_TUPLE_TO_SEQ(MULT_GENERIC_NTH_ASSOC_TUPLE(N, DATA_TUPLE)) )    \
        )

#define MULT_GENERIC_LEVEL2(SEL_EXPR_SEQ, LEVEL_MACRO, ASSOC_SEQ) \
    _Generic(                   \
        (BOOST_PP_SEQ_HEAD(SEL_EXPR_SEQ)),                   \
        BOOST_PP_ENUM( BOOST_PP_SEQ_SIZE(ASSOC_SEQ), MULT_GENERIC_LEVEL_REP2, (BOOST_PP_SEQ_POP_FRONT(SEL_EXPR_SEQ), LEVEL_MACRO, ASSOC_SEQ) ) \
    )




#define MULT_GENERIC0(SEL_EXPR_SEQ, ASSOC_SEQ) \
    BOOST_PP_SEQ_HEAD(ASSOC_SEQ)

#define MULT_GENERIC1(SEL_EXPR_SEQ, ASSOC_SEQ) \
    MULT_GENERIC_LEVEL1( SEL_EXPR_SEQ, MULT_GENERIC0, ASSOC_SEQ )

#define MULT_GENERIC2(SEL_EXPR_SEQ, ASSOC_SEQ) \
    MULT_GENERIC_LEVEL2( SEL_EXPR_SEQ, MULT_GENERIC1, ASSOC_SEQ )

#define MULT_GENERIC(SEL_EXPR_TUPLE, ...) \
    BOOST_PP_CAT(MULT_GENERIC, BOOST_PP_TUPLE_SIZE(SEL_EXPR_TUPLE)) ( BOOST_PP_TUPLE_TO_SEQ(SEL_EXPR_TUPLE), BOOST_PP_TUPLE_TO_SEQ((__VA_ARGS__)) )
于 2013-06-26T05:12:52.420 に答える
2

上記のソリューションは、OPの元の実装よりも簡単でもクリーンでもないように感じます。最善のアプローチは、単純に保ち、マクロをより多くのマクロで抽象化することだと思います。以下は一例です。

#include<stdio.h>

double multiply_id ( int a, double b )
{
    return a * b;
}

double multiply_di ( double a, int b )
{
    return a * b;
}

double multiply_dd ( double a, double b )
{
    return a * b;
}

int multiply_ii ( int a, int b )
{
    return a * b;
}


/*
#define multiply(a,b) _Generic((a), \
int: _Generic((b), \
    int: multiply_ii, \
    double: multiply_id), \
double: _Generic((b), \
    int: multiply_di, \
    double: multiply_dd) ) (a,b)
*/

#define _G2(ParamB,ParamA_Type, TypeB1, TypeB1_Func, TypeB2, TypeB2_Func) \
    ParamA_Type: _Generic((ParamB), \
        TypeB1: TypeB1_Func, \
        TypeB2: TypeB2_Func)

#define multiply(a,b) _Generic((a), \
    _G2(b,int,int,multiply_ii,double,multiply_id), \
    _G2(b,double,int,multiply_di,double,multiply_dd) ) (a,b)


int main(int argc, const char * argv[]) {
    int i;
    double d;

    i = 5;
    d = 5.5;

    d = multiply( multiply(d, multiply(d,i) ) ,multiply(i,i) );

    printf("%f\n", d);  
    return 0;
}

_G22 つのパラメーター ジェネリックのマクロです。_G3これは a以上に簡単に拡張できます。トリックは、通常どおりに実行してから、そのフォームからマクロを作成することです。

于 2017-07-12T01:34:43.753 に答える