166

テキストを n-gram に分割する方法を探しています。通常、私は次のようなことをします:

import nltk
from nltk import bigrams
string = "I really like python, it's pretty awesome."
string_bigrams = bigrams(string)
print string_bigrams

nltk がバイグラムとトライグラムしか提供しないことは承知していますが、テキストを 4 グラム、5 グラム、または 100 グラムに分割する方法はありますか?

ありがとう!

4

17 に答える 17

257

他のユーザーから寄せられたネイティブ python ベースの優れた回答。しかし、これnltkがアプローチです(念のため、OPはnltkライブラリにすでに存在するものを再発明したことで罰せられます)。

ではめったに使わないngram モジュールがありますnltk。ngram が読みにくいからではありませんが、n > 3 の ngram に基づいてモデルをトレーニングすると、多くのデータが希薄になります。

from nltk import ngrams

sentence = 'this is a foo bar sentences and i want to ngramize it'

n = 6
sixgrams = ngrams(sentence.split(), n)

for grams in sixgrams:
  print grams
于 2013-07-09T12:10:39.040 に答える
76

これがまだ表示されていないことに驚いています。

In [34]: sentence = "I really like python, it's pretty awesome.".split()

In [35]: N = 4

In [36]: grams = [sentence[i:i+N] for i in xrange(len(sentence)-N+1)]

In [37]: for gram in grams: print gram
['I', 'really', 'like', 'python,']
['really', 'like', 'python,', "it's"]
['like', 'python,', "it's", 'pretty']
['python,', "it's", 'pretty', 'awesome.']
于 2013-07-08T16:54:06.313 に答える
17

これは do n-grams の別の簡単な方法です

>>> from nltk.util import ngrams
>>> text = "I am aware that nltk only offers bigrams and trigrams, but is there a way to split my text in four-grams, five-grams or even hundred-grams"
>>> tokenize = nltk.word_tokenize(text)
>>> tokenize
['I', 'am', 'aware', 'that', 'nltk', 'only', 'offers', 'bigrams', 'and', 'trigrams', ',', 'but', 'is', 'there', 'a', 'way', 'to', 'split', 'my', 'text', 'in', 'four-grams', ',', 'five-grams', 'or', 'even', 'hundred-grams']
>>> bigrams = ngrams(tokenize,2)
>>> bigrams
[('I', 'am'), ('am', 'aware'), ('aware', 'that'), ('that', 'nltk'), ('nltk', 'only'), ('only', 'offers'), ('offers', 'bigrams'), ('bigrams', 'and'), ('and', 'trigrams'), ('trigrams', ','), (',', 'but'), ('but', 'is'), ('is', 'there'), ('there', 'a'), ('a', 'way'), ('way', 'to'), ('to', 'split'), ('split', 'my'), ('my', 'text'), ('text', 'in'), ('in', 'four-grams'), ('four-grams', ','), (',', 'five-grams'), ('five-grams', 'or'), ('or', 'even'), ('even', 'hundred-grams')]
>>> trigrams=ngrams(tokenize,3)
>>> trigrams
[('I', 'am', 'aware'), ('am', 'aware', 'that'), ('aware', 'that', 'nltk'), ('that', 'nltk', 'only'), ('nltk', 'only', 'offers'), ('only', 'offers', 'bigrams'), ('offers', 'bigrams', 'and'), ('bigrams', 'and', 'trigrams'), ('and', 'trigrams', ','), ('trigrams', ',', 'but'), (',', 'but', 'is'), ('but', 'is', 'there'), ('is', 'there', 'a'), ('there', 'a', 'way'), ('a', 'way', 'to'), ('way', 'to', 'split'), ('to', 'split', 'my'), ('split', 'my', 'text'), ('my', 'text', 'in'), ('text', 'in', 'four-grams'), ('in', 'four-grams', ','), ('four-grams', ',', 'five-grams'), (',', 'five-grams', 'or'), ('five-grams', 'or', 'even'), ('or', 'even', 'hundred-grams')]
>>> fourgrams=ngrams(tokenize,4)
>>> fourgrams
[('I', 'am', 'aware', 'that'), ('am', 'aware', 'that', 'nltk'), ('aware', 'that', 'nltk', 'only'), ('that', 'nltk', 'only', 'offers'), ('nltk', 'only', 'offers', 'bigrams'), ('only', 'offers', 'bigrams', 'and'), ('offers', 'bigrams', 'and', 'trigrams'), ('bigrams', 'and', 'trigrams', ','), ('and', 'trigrams', ',', 'but'), ('trigrams', ',', 'but', 'is'), (',', 'but', 'is', 'there'), ('but', 'is', 'there', 'a'), ('is', 'there', 'a', 'way'), ('there', 'a', 'way', 'to'), ('a', 'way', 'to', 'split'), ('way', 'to', 'split', 'my'), ('to', 'split', 'my', 'text'), ('split', 'my', 'text', 'in'), ('my', 'text', 'in', 'four-grams'), ('text', 'in', 'four-grams', ','), ('in', 'four-grams', ',', 'five-grams'), ('four-grams', ',', 'five-grams', 'or'), (',', 'five-grams', 'or', 'even'), ('five-grams', 'or', 'even', 'hundred-grams')]
于 2014-06-18T17:59:29.207 に答える
8

を使用して、これを行う独自の関数を簡単に作成できますitertools

from itertools import izip, islice, tee
s = 'spam and eggs'
N = 3
trigrams = izip(*(islice(seq, index, None) for index, seq in enumerate(tee(s, N))))
list(trigrams)
# [('s', 'p', 'a'), ('p', 'a', 'm'), ('a', 'm', ' '),
# ('m', ' ', 'a'), (' ', 'a', 'n'), ('a', 'n', 'd'),
# ('n', 'd', ' '), ('d', ' ', 'e'), (' ', 'e', 'g'),
# ('e', 'g', 'g'), ('g', 'g', 's')]
于 2013-07-08T16:50:30.110 に答える
2

私は nltk を扱ったことはありませんが、小さなクラスのプロジェクトの一部として N グラムを扱いました。文字列内で発生するすべての N グラムの頻度を見つけたい場合は、次の方法があります。DNワードのヒストグラムが得られます。

D = dict()
string = 'whatever string...'
strparts = string.split()
for i in range(len(strparts)-N): # N-grams
    try:
        D[tuple(strparts[i:i+N])] += 1
    except:
        D[tuple(strparts[i:i+N])] = 1
于 2013-07-08T16:44:15.920 に答える
2

four_grams については、すでにNLTKにあります。これに役立つコードを次に示します。

 from nltk.collocations import *
 import nltk
 #You should tokenize your text
 text = "I do not like green eggs and ham, I do not like them Sam I am!"
 tokens = nltk.wordpunct_tokenize(text)
 fourgrams=nltk.collocations.QuadgramCollocationFinder.from_words(tokens)
 for fourgram, freq in fourgrams.ngram_fd.items():  
       print fourgram, freq

お役に立てば幸いです。

于 2015-02-03T16:52:36.677 に答える
2

sklearn.feature_extraction.text.CountVectorizerを使用できます:

import sklearn.feature_extraction.text # FYI http://scikit-learn.org/stable/install.html
ngram_size = 4
string = ["I really like python, it's pretty awesome."]
vect = sklearn.feature_extraction.text.CountVectorizer(ngram_range=(ngram_size,ngram_size))
vect.fit(string)
print('{1}-grams: {0}'.format(vect.get_feature_names(), ngram_size))

出力:

4-grams: [u'like python it pretty', u'python it pretty awesome', u'really like python it']

ngram_sizeを任意の正の整数に設定できます。つまり、テキストを 4 グラム、5 グラム、さらには 100 グラムに分割できます。

于 2015-08-14T19:57:39.537 に答える
1

Nltk は優れていますが、一部のプロジェクトではオーバーヘッドになることがあります。

import re
def tokenize(text, ngrams=1):
    text = re.sub(r'[\b\(\)\\\"\'\/\[\]\s+\,\.:\?;]', ' ', text)
    text = re.sub(r'\s+', ' ', text)
    tokens = text.split()
    return [tuple(tokens[i:i+ngrams]) for i in xrange(len(tokens)-ngrams+1)]

使用例:

>> text = "This is an example text"
>> tokenize(text, 2)
[('This', 'is'), ('is', 'an'), ('an', 'example'), ('example', 'text')]
>> tokenize(text, 3)
[('This', 'is', 'an'), ('is', 'an', 'example'), ('an', 'example', 'text')]
于 2015-08-28T14:48:28.303 に答える
0

以下の他のパッケージを使用せずに、コードを使用してすべての 4-6gram を取得できます。

from itertools import chain

def get_m_2_ngrams(input_list, min, max):
    for s in chain(*[get_ngrams(input_list, k) for k in range(min, max+1)]):
        yield ' '.join(s)

def get_ngrams(input_list, n):
    return zip(*[input_list[i:] for i in range(n)])

if __name__ == '__main__':
    input_list = ['I', 'am', 'aware', 'that', 'nltk', 'only', 'offers', 'bigrams', 'and', 'trigrams', ',', 'but', 'is', 'there', 'a', 'way', 'to', 'split', 'my', 'text', 'in', 'four-grams', ',', 'five-grams', 'or', 'even', 'hundred-grams']
    for s in get_m_2_ngrams(input_list, 4, 6):
        print(s)

出力は以下のとおりです。

I am aware that
am aware that nltk
aware that nltk only
that nltk only offers
nltk only offers bigrams
only offers bigrams and
offers bigrams and trigrams
bigrams and trigrams ,
and trigrams , but
trigrams , but is
, but is there
but is there a
is there a way
there a way to
a way to split
way to split my
to split my text
split my text in
my text in four-grams
text in four-grams ,
in four-grams , five-grams
four-grams , five-grams or
, five-grams or even
five-grams or even hundred-grams
I am aware that nltk
am aware that nltk only
aware that nltk only offers
that nltk only offers bigrams
nltk only offers bigrams and
only offers bigrams and trigrams
offers bigrams and trigrams ,
bigrams and trigrams , but
and trigrams , but is
trigrams , but is there
, but is there a
but is there a way
is there a way to
there a way to split
a way to split my
way to split my text
to split my text in
split my text in four-grams
my text in four-grams ,
text in four-grams , five-grams
in four-grams , five-grams or
four-grams , five-grams or even
, five-grams or even hundred-grams
I am aware that nltk only
am aware that nltk only offers
aware that nltk only offers bigrams
that nltk only offers bigrams and
nltk only offers bigrams and trigrams
only offers bigrams and trigrams ,
offers bigrams and trigrams , but
bigrams and trigrams , but is
and trigrams , but is there
trigrams , but is there a
, but is there a way
but is there a way to
is there a way to split
there a way to split my
a way to split my text
way to split my text in
to split my text in four-grams
split my text in four-grams ,
my text in four-grams , five-grams
text in four-grams , five-grams or
in four-grams , five-grams or even
four-grams , five-grams or even hundred-grams

このブログで詳細を確認できます

于 2018-01-29T09:05:49.597 に答える