numpy.dot 製品について疑問があります。
次のような行列 6x6 を定義します。
C=np.zeros((6,6))
C[0,0], C[1,1], C[2,2] = 129.5, 129.5, 129.5
C[3,3], C[4,4], C[5,5] = 25, 25, 25
C[0,1], C[0,2] = 82, 82
C[1,0], C[1,2] = 82, 82
C[2,0], C[2,1] = 82, 82
次に、多次元配列を使用して 4 ランクのテンソルに再キャストします
def long2short(m, n):
"""
Given two indices m and n of the stiffness tensor the function
return i the index of the Voigt matrix
i = long2short(m,n)
"""
if m == n:
i = m
elif (m == 1 and n == 2) or (m == 2 and n == 1):
i = 3
elif (m == 0 and n == 2) or (m == 2 and n == 0):
i = 4
elif (m == 0 and n == 1) or (m == 1 and n == 0):
i = 5
return i
c=np.zeros((3,3,3,3))
for m in range(3):
for n in range(3):
for o in range(3):
for p in range(3):
i = long2short(m, n)
j = long2short(o, p)
c[m, n, o, p] = C[i, j]
そして、次のように定義した回転行列を使用して、テンソルの座標参照系を変更したいと思います。
Q=np.array([[sqrt(2.0/3), 0, 1.0/sqrt(3)], [-1.0/sqrt(6), 1.0/sqrt(2), 1.0/sqrt(3)], [-1.0/sqrt(6), -1.0/sqrt(2), 1.0/sqrt(3)]])
Qt = Q.transpose()
行列は直交しています (ただし、数値の精度は完全ではありません)。
In [157]: np.dot(Q, Qt)
Out[157]:
array([[ 1.00000000e+00, 4.28259858e-17, 4.28259858e-17],
[ 4.28259858e-17, 1.00000000e+00, 2.24240114e-16],
[ 4.28259858e-17, 2.24240114e-16, 1.00000000e+00]])
しかし、なぜ私が実行した場合:
In [158]: a=np.dot(Q,Qt)
In [159]: c_mat=np.dot(a, c)
In [160]: a1 = np.dot(Qt, c)
In [161]: c_mat1=np.dot(Q, a1)
c_mat (=c) の期待値は得られますが、c_mat1 の期待値は得られませんか? 多次元配列でドットを使用するための微妙な点はありますか?