はい、次のようなものです。
ここでの更新は、カラーバー付きのバージョンです。
import numpy as np
from pylab import *
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
def randrange(n, vmin, vmax):
return (vmax-vmin)*np.random.rand(n) + vmin
fig = plt.figure(figsize=(8,6))
ax = fig.add_subplot(111,projection='3d')
n = 100
xs = randrange(n, 23, 32)
ys = randrange(n, 0, 100)
zs = randrange(n, 0, 100)
colmap = cm.ScalarMappable(cmap=cm.hsv)
colmap.set_array(zs)
yg = ax.scatter(xs, ys, zs, c=cm.hsv(zs/max(zs)), marker='o')
cb = fig.colorbar(colmap)
ax.set_xlabel('X Label')
ax.set_ylabel('Y Label')
ax.set_zlabel('Z Label')
plt.show()
次のようになります。
更新これは、4 次元の属性でデータ ポイントを色付けする明示的な例です。
import numpy as np
from pylab import *
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
def randrange(n, vmin, vmax):
return (vmax-vmin)*np.random.rand(n) + vmin
fig = plt.figure(figsize=(8,6))
ax = fig.add_subplot(111,projection='3d')
n = 100
xs = randrange(n, 0, 100)
ys = randrange(n, 0, 100)
zs = randrange(n, 0, 100)
the_fourth_dimension = randrange(n,0,100)
colors = cm.hsv(the_fourth_dimension/max(the_fourth_dimension))
colmap = cm.ScalarMappable(cmap=cm.hsv)
colmap.set_array(the_fourth_dimension)
yg = ax.scatter(xs, ys, zs, c=colors, marker='o')
cb = fig.colorbar(colmap)
ax.set_xlabel('X Label')
ax.set_ylabel('Y Label')
ax.set_zlabel('Z Label')
plt.show()