spacy nerモデルをトレーニングしている場合は、nerの精度、再現率、再現率を提供するscorer.pyAPIを使用します。
コードと出力は次の形式になります:-
17
次のリンクで同じ質問をしている人のために:
spaCy / scorer.py'''python
import spacy
from spacy.gold import GoldParse
from spacy.scorer import Scorer
def evaluate(ner_model, examples):
scorer = Scorer()
for input_, annot in examples:
doc_gold_text = ner_model.make_doc(input_)
gold = GoldParse(doc_gold_text, entities=annot)
pred_value = ner_model(input_)
scorer.score(pred_value, gold)
return scorer.scores
実行例
examples = [
('Who is Shaka Khan?',
[(7, 17, 'PERSON')]),
('I like London and Berlin.',
[(7, 13, 'LOC'), (18, 24, 'LOC')])
]
ner_model = spacy.load(ner_model_path) # for spaCy's pretrained use 'en_core_web_sm'
results = evaluate(ner_model, examples)
'''
Output will be in format like:-
{'uas': 0.0, 'las': 0.0, **'ents_p'**: 43.75, **'ents_r'**: 35.59322033898305, **'ents_f'**: 39.252336448598136, 'tags_acc': 0.0, 'token_acc': 100.0}**strong text**