10

numpy.linalg.lstsq - メソッドによって平面を計算する 3D ポイントのリストがあります。しかし、今、この平面への各点の正射影を行いたいのですが、間違いを見つけることができません:

from numpy.linalg import lstsq

def VecProduct(vek1, vek2):
    return (vek1[0]*vek2[0] + vek1[1]*vek2[1] + vek1[2]*vek2[2])

def CalcPlane(x, y, z):
    # x, y and z are given in lists
    n = len(x)
    sum_x = sum_y = sum_z = sum_xx = sum_yy = sum_xy = sum_xz = sum_yz = 0
    for i in range(n):
        sum_x += x[i] 
        sum_y += y[i]
        sum_z += z[i]
        sum_xx += x[i]*x[i]
        sum_yy += y[i]*y[i]
        sum_xy += x[i]*y[i]
        sum_xz += x[i]*z[i]
        sum_yz += y[i]*z[i]

    M = ([sum_xx, sum_xy, sum_x], [sum_xy, sum_yy, sum_y], [sum_x, sum_y, n])
    b = (sum_xz, sum_yz, sum_z)

    a,b,c = lstsq(M, b)[0]

    '''
    z = a*x + b*y + c
    a*x = z - b*y - c
    x = -(b/a)*y + (1/a)*z - c/a 
    '''

    r0 = [-c/a, 
          0, 
          0]

    u = [-b/a,
         1,
         0]

    v = [1/a,
         0,
         1]

    xn = []
    yn = []
    zn = []

    # orthogonalize u and v with Gram-Schmidt to get u and w

    uu = VecProduct(u, u)
    vu = VecProduct(v, u)
    fak0 = vu/uu
    erg0 = [val*fak0 for val in u]
    w = [v[0]-erg0[0], 
        v[1]-erg0[1], 
        v[2]-erg0[2]]
    ww = VecProduct(w, w)

    # P_new = ((x*u)/(u*u))*u + ((x*w)/(w*w))*w
    for i in range(len(x)):
        xu = VecProduct([x[i], y[i], z[i]], u)
        xw = VecProduct([x[i], y[i], z[i]], w)
        fak1 = xu/uu
        fak2 = xw/ww
        erg1 = [val*fak1 for val in u]
        erg2 = [val*fak2 for val in w]
        erg = [erg1[0]+erg2[0], erg1[1]+erg2[1], erg1[2]+erg2[2]]
        erg[0] += r0[0] 
        xn.append(erg[0])
        yn.append(erg[1])
        zn.append(erg[2])

    return (xn,yn,zn)

これにより、すべてが平面内にあるポイントのリストが返されますが、それらを表示すると、本来あるべき位置にありません。この問題を解決するための特定の組み込みメソッドが既にあると思いますが、 =( を見つけることができませんでした

4

3 に答える 3

14

np.lstsq仕事をさせるのではなく、事前に計算された 3x3 マトリックスをフィードしているため、の使用が非常に不十分です。私は次のようにします:

import numpy as np

def calc_plane(x, y, z):
    a = np.column_stack((x, y, np.ones_like(x)))
    return np.linalg.lstsq(a, z)[0]

>>> x = np.random.rand(1000)
>>> y = np.random.rand(1000)
>>> z = 4*x + 5*y + 7 + np.random.rand(1000)*.1
>>> calc_plane(x, y, z)
array([ 3.99795126,  5.00233364,  7.05007326])

z実際には、ゼロでない係数に依存しない平面の式を使用する方が便利です。つまり、 を使用しますa*x + b*y + c*z = 1。同様に を計算aし、次のことbc行うことができます。

def calc_plane_bis(x, y, z):
    a = np.column_stack((x, y, z))
    return np.linalg.lstsq(a, np.ones_like(x))[0]
>>> calc_plane_bis(x, y, z)
array([-0.56732299, -0.70949543,  0.14185393])

私の別の方程式を使用して平面に点を投影するには、ベクトル(a, b, c)は平面に垂直です。ポイントが平面上にあることを確認するのは簡単な(a, b, c) / (a**2+b**2+c**2)ので、平面上のそのポイントへのすべてのポイントを参照し、ポイントを法線ベクトルに投影し、ポイントからその投影を減算し、それらを参照して元。次のように実行できます。

def project_points(x, y, z, a, b, c):
    """
    Projects the points with coordinates x, y, z onto the plane
    defined by a*x + b*y + c*z = 1
    """
    vector_norm = a*a + b*b + c*c
    normal_vector = np.array([a, b, c]) / np.sqrt(vector_norm)
    point_in_plane = np.array([a, b, c]) / vector_norm

    points = np.column_stack((x, y, z))
    points_from_point_in_plane = points - point_in_plane
    proj_onto_normal_vector = np.dot(points_from_point_in_plane,
                                     normal_vector)
    proj_onto_plane = (points_from_point_in_plane -
                       proj_onto_normal_vector[:, None]*normal_vector)

    return point_in_plane + proj_onto_plane

したがって、次のようなことができます。

>>> project_points(x, y, z, *calc_plane_bis(x, y, z))
array([[  0.13138012,   0.76009389,  11.37555123],
       [  0.71096929,   0.68711773,  13.32843506],
       [  0.14889398,   0.74404116,  11.36534936],
       ..., 
       [  0.85975642,   0.4827624 ,  12.90197969],
       [  0.48364383,   0.2963717 ,  10.46636903],
       [  0.81596472,   0.45273681,  12.57679188]])
于 2013-07-24T15:25:05.917 に答える