次のコードは、命令レベルの並列処理 (ILP) の例を示しています。
この__global__
例の関数は、2 つの配列間の割り当てを実行するだけです。の場合ILP=1
、配列要素の数と同じ数のN
スレッドがあるため、各スレッドは単一の割り当てを実行します。それとは反対に、 の場合、それぞれが要素を処理ILP=2
する多数のN/2
スレッドがあります。2
一般に、 の場合、各要素を処理ILP=k
する多数のN/k
スレッドがあります。k
コードに加えて、以下では、 (ケプラー アーキテクチャ) で実行された と のさまざまな値のタイミングも報告していNVIDIA GT920M
ます。ご覧のとおり:N
ILP
- の値が大きい場合、カード
N
の最大帯域幅、つまり に近いメモリ帯域幅に達します。GT920M
14.4GB/s
- 固定され
N
た の場合、 の値を変更ILP
してもパフォーマンスは変わりません。
ポイント 2. に関しては、Maxwell で同じコードをテストしたところ、同じ動作が観察されました ( に対するパフォーマンスの変化はありませんILP
)。に対するパフォーマンスの変化については、NVIDIA Kepler アーキテクチャレポートの ILP の効率とパフォーマンスILP
への回答を参照してください。また、Fermi アーキテクチャでもテストされます。
メモリ速度は、次の式で計算されています。
(2.f * 4.f * N * numITER) / (1e9 * timeTotal * 1e-3)
どこ
4.f * N * numITER
は読み取りまたは書き込みの数です。
2.f * 4.f * N * numITER
は読み取りと書き込みの数です。
timeTotal * 1e-3
seconds
(timeTotal
は)の時間ms
です。
コード
// --- GT920m - 14.4 GB/s
// http://gpuboss.com/gpus/GeForce-GTX-280M-vs-GeForce-920M
#include<stdio.h>
#include<iostream>
#include "Utilities.cuh"
#include "TimingGPU.cuh"
#define BLOCKSIZE 32
#define DEBUG
/****************************************/
/* INSTRUCTION LEVEL PARALLELISM KERNEL */
/****************************************/
__global__ void ILPKernel(const int * __restrict__ d_a, int * __restrict__ d_b, const int ILP, const int N) {
const int tid = threadIdx.x + blockIdx.x * blockDim.x * ILP;
if (tid >= N) return;
for (int j = 0; j < ILP; j++) d_b[tid + j * blockDim.x] = d_a[tid + j * blockDim.x];
}
/********/
/* MAIN */
/********/
int main() {
//const int N = 8192;
const int N = 524288 * 32;
//const int N = 1048576;
//const int N = 262144;
//const int N = 2048;
const int numITER = 100;
const int ILP = 16;
TimingGPU timerGPU;
int *h_a = (int *)malloc(N * sizeof(int));
int *h_b = (int *)malloc(N * sizeof(int));
for (int i = 0; i<N; i++) {
h_a[i] = 2;
h_b[i] = 1;
}
int *d_a; gpuErrchk(cudaMalloc(&d_a, N * sizeof(int)));
int *d_b; gpuErrchk(cudaMalloc(&d_b, N * sizeof(int)));
gpuErrchk(cudaMemcpy(d_a, h_a, N * sizeof(int), cudaMemcpyHostToDevice));
gpuErrchk(cudaMemcpy(d_b, h_b, N * sizeof(int), cudaMemcpyHostToDevice));
/**************/
/* ILP KERNEL */
/**************/
float timeTotal = 0.f;
for (int k = 0; k < numITER; k++) {
timerGPU.StartCounter();
ILPKernel << <iDivUp(N / ILP, BLOCKSIZE), BLOCKSIZE >> >(d_a, d_b, ILP, N);
#ifdef DEBUG
gpuErrchk(cudaPeekAtLastError());
gpuErrchk(cudaDeviceSynchronize());
#endif
timeTotal = timeTotal + timerGPU.GetCounter();
}
printf("Bandwidth = %f GB / s; Num blocks = %d\n", (2.f * 4.f * N * numITER) / (1e6 * timeTotal), iDivUp(N / ILP, BLOCKSIZE));
gpuErrchk(cudaMemcpy(h_b, d_b, N * sizeof(int), cudaMemcpyDeviceToHost));
for (int i = 0; i < N; i++) if (h_a[i] != h_b[i]) { printf("Error at i = %i for kernel0! Host = %i; Device = %i\n", i, h_a[i], h_b[i]); return 1; }
return 0;
}
パフォーマンス
GT 920M
N = 512 - ILP = 1 - BLOCKSIZE = 512 (1 block - each block processes 512 elements) - Bandwidth = 0.092 GB / s
N = 1024 - ILP = 1 - BLOCKSIZE = 512 (2 blocks - each block processes 512 elements) - Bandwidth = 0.15 GB / s
N = 2048 - ILP = 1 - BLOCKSIZE = 512 (4 blocks - each block processes 512 elements) - Bandwidth = 0.37 GB / s
N = 2048 - ILP = 2 - BLOCKSIZE = 256 (4 blocks - each block processes 512 elements) - Bandwidth = 0.36 GB / s
N = 2048 - ILP = 4 - BLOCKSIZE = 128 (4 blocks - each block processes 512 elements) - Bandwidth = 0.35 GB / s
N = 2048 - ILP = 8 - BLOCKSIZE = 64 (4 blocks - each block processes 512 elements) - Bandwidth = 0.26 GB / s
N = 2048 - ILP = 16 - BLOCKSIZE = 32 (4 blocks - each block processes 512 elements) - Bandwidth = 0.31 GB / s
N = 4096 - ILP = 1 - BLOCKSIZE = 512 (8 blocks - each block processes 512 elements) - Bandwidth = 0.53 GB / s
N = 4096 - ILP = 2 - BLOCKSIZE = 256 (8 blocks - each block processes 512 elements) - Bandwidth = 0.61 GB / s
N = 4096 - ILP = 4 - BLOCKSIZE = 128 (8 blocks - each block processes 512 elements) - Bandwidth = 0.74 GB / s
N = 4096 - ILP = 8 - BLOCKSIZE = 64 (8 blocks - each block processes 512 elements) - Bandwidth = 0.74 GB / s
N = 4096 - ILP = 16 - BLOCKSIZE = 32 (8 blocks - each block processes 512 elements) - Bandwidth = 0.56 GB / s
N = 8192 - ILP = 1 - BLOCKSIZE = 512 (16 blocks - each block processes 512 elements) - Bandwidth = 1.4 GB / s
N = 8192 - ILP = 2 - BLOCKSIZE = 256 (16 blocks - each block processes 512 elements) - Bandwidth = 1.1 GB / s
N = 8192 - ILP = 4 - BLOCKSIZE = 128 (16 blocks - each block processes 512 elements) - Bandwidth = 1.5 GB / s
N = 8192 - ILP = 8 - BLOCKSIZE = 64 (16 blocks - each block processes 512 elements) - Bandwidth = 1.4 GB / s
N = 8192 - ILP = 16 - BLOCKSIZE = 32 (16 blocks - each block processes 512 elements) - Bandwidth = 1.3 GB / s
...
N = 16777216 - ILP = 1 - BLOCKSIZE = 512 (32768 blocks - each block processes 512 elements) - Bandwidth = 12.9 GB / s
N = 16777216 - ILP = 2 - BLOCKSIZE = 256 (32768 blocks - each block processes 512 elements) - Bandwidth = 12.8 GB / s
N = 16777216 - ILP = 4 - BLOCKSIZE = 128 (32768 blocks - each block processes 512 elements) - Bandwidth = 12.8 GB / s
N = 16777216 - ILP = 8 - BLOCKSIZE = 64 (32768 blocks - each block processes 512 elements) - Bandwidth = 12.7 GB / s
N = 16777216 - ILP = 16 - BLOCKSIZE = 32 (32768 blocks - each block processes 512 elements) - Bandwidth = 12.6 GB / s