1

私が書いたチェックパリティビット関数のパリティビットを正しく計算しているかどうかはわかりません。codeWord の長さは 11 文字で、4 つのパリティ ビットと 7 つのデータ ビットがあります。実装はよさそうですか?

void parityCheck(char* codeWord) {
int parity[4] = {0}, i = 0, diffParity[4] = {0}, twoPower = 0, bitSum = 0;

// Stores # of 1's for each parity bit in array.
parity[0] = (codeWord[2] - 48) + (codeWord[4] - 48) + (codeWord[6] - 48) + (codeWord[8] - 48) + (codeWord[10] - 48);
parity[1] = (codeWord[2] - 48) + (codeWord[5] - 48) + (codeWord[6] - 48) + (codeWord[9] - 48) + (codeWord[10] - 48);
parity[2] = (codeWord[4] - 48) + (codeWord[5] - 48) + (codeWord[6] - 48);
parity[3] = (codeWord[8] - 48) + (codeWord[9] - 48) + (codeWord[10] - 48);

// Determines if sum of bits is even or odd, then tests for difference from actual parity bit.
for (i = 0; i < 4; i++) {
    twoPower = (int)pow((double)2, i);

    if (parity[i] % 2 == 0)
            parity[i] = 0;
        else
            parity[i] = 1;

        if ((codeWord[twoPower-1] - 48) != parity[i])
            diffParity[i] = 1;
}

// Calculates the location of the error bit.
for (i = 0; i < 4; i++) {
    twoPower = (int)pow((double)2, i);
    bitSum += diffParity[i]*twoPower;
}



// Inverts bit at location of error.
if (bitSum <= 11 && bitSum > 0) {
    if ((codeWord[bitSum-1] - 48)) 
        codeWord[bitSum-1] = '0';
    else
        codeWord[bitSum-1] = '1';
}
4

3 に答える 3

0

あなたのコードは、私が思いついたテストケースに合格したため、私の知る限り正常に動作します。いくつかの簡素化が採用されましたが、OP 機能は変更されていません。見やすくするために、いくつかの古典的な単純化が行われました。

void parityCheck(char* cW) {
  int parity[4] = { 0 }, i = 0, diffParity[4] = { 0 }, twoPower = 0, bitSum = 0;

  // Stores # of 1's for each parity bit in array.
  parity[0] = (cW[2] - '0') + (cW[4] - '0') + (cW[6] - '0') + (cW[8] - '0') + (cW[10] - '0');
  parity[1] = (cW[2] - '0') + (cW[5] - '0') + (cW[6] - '0') + (cW[9] - '0') + (cW[10] - '0');
  parity[2] = (cW[4] - '0') + (cW[5] - '0') + (cW[6] - '0');
  parity[3] = (cW[8] - '0') + (cW[9] - '0') + (cW[10] - '0');

  // Determines if sum of bits is even or odd, then tests for difference from actual parity bit.
  for (i = 0; i < 4; i++) {
    //twoPower = (int) pow((double) 2, i);
    twoPower = 1 << i;
    //if (parity[i] % 2 == 0) parity[i] = 0; else parity[i] = 1;
    parity[i] &= 1;  // Make 0 even, 1 odd.
    if ((cW[twoPower - 1]-'0') != parity[i])
      diffParity[i] = 1;
  }

  // Calculates the location of the error bit.
  for (i = 0; i < 4; i++) {
    // twoPower = (int) pow((double) 2, i);
    twoPower = 1 << i;
    bitSum += diffParity[i] * twoPower;
  }

  // Inverts bit at location of error.
  if (bitSum <= 11 && bitSum > 0) {
    if ((cW[bitSum - 1]-'0')) 
      cW[bitSum - 1] = '0';
    else
      cW[bitSum - 1] = '1';
  }
}

void TestP(const char * Test) {
  char buf[100];
  strcpy(buf, Test);
  parityCheck(buf);
  printf("'%s' '%s'\n", Test, buf);
}


int main(void) {
  TestP("00000000000");
  TestP("10011100101");
  TestP("10100111001");
}

OPがテストパターンを投稿していれば役に立ちました。

于 2013-08-02T13:48:25.783 に答える
-1

これが私の実装です。できます。一般の方は無料でご利用いただけます。

「single-error-correcting、double-error-detecting」のように、「secded」という頭字語を使用しました。必要に応じて、これを「トリプルエラー検出器」として再配線できます。実際、これの一部は分離されており、残りは Hamming 7.4 です。

ここでの「文字列」は NUL で終了するのではなく、カウントされます。このコードは、C で記述された Python モジュールから抜粋したものです。これが、表示される文字列型の由来です。

ここで重要な点は、ハミング 7,4 コードが 16 個しかないことを認識することでした。残念ながら私はもう持っていないPythonコードでsecded_of_nibble()を計算しました。

static const unsigned char secded_of_nibble[] = 
{ 0x0, 0xd2, 0x55, 0x87, 0x99, 0x4b, 0xcc, 0x1e, 0xe1, 0x33, 0xb4, 0x66, 0x78, 0
xaa, 0x2d, 0xff };

int fec_secded_encode_cch_bits(const char * strIn, const int cchIn, char * strOu
t, const int cchOut)
{
    assert( cchIn * 2 == cchOut);
    if( cchIn * 2 != cchOut)
        return 0;

    if (!strIn || !strOut)
        return 0;

    int i;
    for (i = 0; i < cchIn; i ++)
    {
        char in_byte = strIn[i];
        char hi_byte = secded_of_nibble[(in_byte >> 4) & 0xf];
        char lo_byte = secded_of_nibble[in_byte & 0xf];

        strOut[i * 2] = hi_byte;
        strOut[i * 2 + 1] = lo_byte;
    }

    return 1;
}

char bv_H[] = {0x9, 0xA, 0xB, 0xC, 0xD, 0xE, 0xF, 0x8};

char val_nibble(char ch)
{
    return ((ch & 0x20) >> 2) | ((ch & 0xE) >> 1);
}

char correct_nibble(char ch)
{
    char nibble = 0;
    int i = 0;
    for (i = 0; i < 8; i++)
    if (ch & (1 << (7-i)))
        nibble ^= bv_H[i];

    return nibble;
}

void apply_correct(char nib_correct, char * pbyte, int * pcSec, int *pcDed)
{
    if (0 == nib_correct)
        return;

    if (nib_correct & 0x8)
    {
        (*pcSec) ++;

        int bit = (8 - (nib_correct & 0x7)) & 0x7;
        /*  fprintf(stderr, "bit %d, %02X\n", bit, 1 << bit);*/
        (*pbyte) ^= (1 << bit);
    }
    else
    {
        (*pcDed) ++;
    }
}

int fec_secded_decode_cch_bits
(
    const char * strIn, 
    const int cchIn, 
    char * strOut, 
    const int cchOut,
    int * pcSec,
    int * pcDed
)
{
    assert( cchIn == cchOut *2);
    if( cchIn != cchOut * 2)
        return 0;

    if (!strIn || !strOut)
        return 0;

    int i;
    for (i = 0; i < cchOut; i ++)
    {
        char hi_byte = strIn[i * 2];
        char lo_byte = strIn[i * 2 + 1];


        char hi_correct = correct_nibble(hi_byte);
        char lo_correct = correct_nibble(lo_byte);

        if (hi_correct || lo_correct)
        {
            apply_correct(hi_correct, &hi_byte, pcSec, pcDed);
            apply_correct(lo_correct, &lo_byte, pcSec, pcDed);
/*          fprintf(stderr, "Corrections %x %x.\n", hi_correct, lo_correct);*/
        }

        char hi_nibble = val_nibble(hi_byte);
        char lo_nibble = val_nibble(lo_byte);

        strOut[i] = (hi_nibble << 4) | lo_nibble;
    }

    return 1;
}
于 2013-08-02T14:17:41.483 に答える