テーブルのピボットを解除する操作は、「融解」と呼ばれます。この場合、困難な部分は によって実行できpd.melt
、他のすべては基本的に名前の変更と並べ替えです。
df = pd.DataFrame(sample).reset_index().rename(columns={"index": "item"})
df = pd.melt(df, "item", var_name="user").dropna()
df = df[["user", "item", "value"]].reset_index(drop=True)
単純に呼び出すだけDataFrame
で、必要な情報はあるが形状が間違っているものが生成されます。
>>> df = pd.DataFrame(sample)
>>> df
user1 user2 user3
item1 2.5 2.5 NaN
item2 3.5 3.0 4.5
item3 3.0 3.5 NaN
item4 3.5 4.0 NaN
item5 2.5 NaN 1.0
item6 3.0 NaN 4.0
それでは、インデックスを実際の列に昇格させて、名前を改善しましょう。
>>> df = pd.DataFrame(sample).reset_index().rename(columns={"index": "item"})
>>> df
item user1 user2 user3
0 item1 2.5 2.5 NaN
1 item2 3.5 3.0 4.5
2 item3 3.0 3.5 NaN
3 item4 3.5 4.0 NaN
4 item5 2.5 NaN 1.0
5 item6 3.0 NaN 4.0
pd.melt
次に、列を回転させるために呼び出すことができます。必要な変数名「user」を指定しないと、「変数」という退屈な名前が付けられます (データ自体に退屈な名前「値」が付けられるのと同じように)。
>>> df = pd.melt(df, "item", var_name="user").dropna()
>>> df
item user value
0 item1 user1 2.5
1 item2 user1 3.5
2 item3 user1 3.0
3 item4 user1 3.5
4 item5 user1 2.5
5 item6 user1 3.0
6 item1 user2 2.5
7 item2 user2 3.0
8 item3 user2 3.5
9 item4 user2 4.0
13 item2 user3 4.5
16 item5 user3 1.0
17 item6 user3 4.0
最後に、インデックスの順序と番号を変更できます。
>>> df = df[["user", "item", "value"]].reset_index(drop=True)
>>> df
user item value
0 user1 item1 2.5
1 user1 item2 3.5
2 user1 item3 3.0
3 user1 item4 3.5
4 user1 item5 2.5
5 user1 item6 3.0
6 user2 item1 2.5
7 user2 item2 3.0
8 user2 item3 3.5
9 user2 item4 4.0
10 user3 item2 4.5
11 user3 item5 1.0
12 user3 item6 4.0
melt
慣れるとかなり便利。通常、ここのように、前後に名前の変更/並べ替えを行います。