私は一日中この難問に苦しんでいて、近づいてきましたが、葉巻はありません. 都市内の 2 つの地区からの 2 つの別々の社会経済調査の結果である 2 つのデータ フレームがあります。これらのデータ フレームの列を棒グラフで並べて比較し、両方の調査で特定の質問に対する回答の頻度 (カウント) を表示したいと考えています。
各調査で尋ねられた質問は同一でした。ただし、これらはわずかに異なる方法でコーディングされているため、次のように列名がわずかに異なります。2 つのデータ フレーム (ar
およびbn
) からのデータを生データと同じバー プロットにプロットすることができました。つまり、データ フレームをマージする必要はありません。ただし、積み上げ棒グラフを並べてプロットできないようです。
次のコードで ggplot2 を使用しました。
ggplot(bn, aes(A8_HHH_hig, fill=A6_Sex_HHH))
+ geom_bar(position="stack", alpha=0.5)
+ geom_bar(data=ar, aes(A9_HHHedulevl, fill=A7_HHsex), position="stack", alpha=0.5)
これが生成されます:
お気づきのように、私は 2 つのデータ フレームの最高教育レベルに基づいて、男性と女性の回答者の割合をプロットしようとしています。(回答者の性別も、各データ フレームで異なる方法でコード化されていることに注意してください。つまり、男性/男性と女性/女性です。)
値を比較しやすいように、これら 2 つの積み上げ棒グラフを同じグリッドに並べてプロットしたいと思います。ただし、position="dodge"
値は異なるデータフレームから取得されるため、ここでオプションを使用できるかどうかは完全にはわかりません。
これが可能かどうか知っている人はいますか?! それとも、これらの値を視覚的に比較する別の方法でしょうか?
誰かが見る時間があれば、再現可能なコードをいくつか添付しました。
ありがとう
dput(ar)
structure(list(District = c("Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi"), A9_HHHedulevl = structure(c(9L,
9L, 9L, 9L, 8L, 9L, 5L, 9L, 9L, 8L, 9L, 9L, 9L, 9L, 9L, 9L, 2L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 3L, 9L, 3L, 9L, 9L, 9L, 9L,
7L, 7L, 8L, 6L, 9L, 9L, 8L, 9L, 9L, 8L, 6L, 9L, 9L, 9L, 9L, 8L,
6L, 9L, 9L, 9L, 6L, 9L, 9L, 1L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 4L, 9L, 6L, 9L, 9L, 9L, 9L, 6L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 8L, 6L, 8L, 9L, 9L, 9L, 6L, 6L, 3L, 6L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 6L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 6L, 9L, 9L, 9L,
3L), .Label = c("Adult Education", "Junior Secondary", "koranic",
"NCE", "None", "Polytechnic", "Senior Primary", "Senior Secondary",
"University"), class = "factor"), A7_HHsex = structure(c(2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L,
2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L), .Label = c("female", "male"), class = "factor")), .Names = c("District",
"A9_HHHedulevl", "A7_HHsex"), row.names = c(1L, 2L, 3L, 4L, 5L,
6L, 7L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 19L, 20L,
21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L, 31L, 32L, 33L,
34L, 35L, 36L, 37L, 38L, 39L, 40L, 41L, 42L, 43L, 44L, 46L, 47L,
48L, 49L, 50L, 51L, 52L, 53L, 54L, 55L, 56L, 57L, 58L, 59L, 60L,
61L, 62L, 63L, 64L, 65L, 66L, 67L, 68L, 69L, 70L, 71L, 72L, 73L,
74L, 75L, 76L, 77L, 78L, 79L, 80L, 81L, 82L, 83L, 84L, 85L, 86L,
87L, 88L, 89L, 90L, 91L, 92L, 93L, 94L, 95L, 96L, 97L, 98L, 99L,
100L, 101L, 102L, 103L, 104L, 105L, 106L, 107L, 108L, 109L, 110L,
111L, 113L, 114L, 115L, 116L, 117L, 118L, 119L, 120L, 121L, 122L,
123L, 124L, 125L, 126L, 127L, 128L, 129L, 130L, 131L, 132L, 133L,
134L), class = "data.frame", na.action = structure(131:135, .Names = c("135",
"136", "137", "138", "139"), class = "omit"))
dput(bn)
structure(list(District = c("Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa"), A8_HHH_hig = structure(c(7L, 7L, 7L, 12L, 7L, 7L,
12L, 4L, 4L, 4L, 4L, 4L, 9L, 7L, 7L, 10L, 4L, 1L, 4L, 7L, 10L,
12L, 12L, 12L, 7L, 12L, 9L, 6L, 4L, 11L, 4L, 4L, 4L, 10L, 12L,
12L, 12L, 12L, 7L, 10L, 9L, 11L, 7L, 7L, 7L, 7L, 9L, 7L, 7L,
7L, 7L, 9L, 7L, 12L, 12L, 7L, 12L, 11L, 7L, 7L, 12L, 12L, 12L,
12L, 12L, 12L, 7L, 12L, 10L, 10L, 12L, 8L, 4L, 4L, 12L, 12L,
4L, 12L, 12L, 12L, 7L, 7L, 9L, 2L, 9L, 12L, 2L, 5L, 12L, 7L,
10L, 10L, 12L, 10L, 10L, 4L, 10L, 1L, 5L, 7L, 1L, 10L, 10L, 10L,
10L, 10L, 10L, 3L, 10L, 10L, 4L, 10L, 10L, 10L, 10L, 10L, 4L,
10L, 10L, 10L, 3L, 10L, 9L, 4L, 4L, 4L, 4L, 12L, 12L, 12L, 12L,
3L, 7L, 7L, 5L, 7L, 7L, 12L, 12L, 7L, 10L, 7L, 7L, 7L, 12L, 12L,
7L, 7L, 12L, 12L, 12L, 12L, 12L, 7L, 12L, 12L, 12L, 12L, 12L,
10L, 10L, 12L, 12L, 9L, 12L, 12L, 7L, 6L, 12L, 12L, 7L, 12L,
10L, 5L, 12L, 12L, 7L, 11L, 12L, 12L, 12L, 5L, 7L, 7L, 12L, 12L,
7L, 7L, 7L, 12L, 7L, 7L, 12L, 12L, 12L, 1L), .Label = c("Adult Education",
"Junior Primary", "Junior Secondary", "Koranic", "NCE", "None",
"Polytechnic", "Prelim / JMB", "Senior Primary", "Senior Secondary",
"Technical College", "University"), class = "factor"), A6_Sex_HHH = structure(c(2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L,
2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L,
1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 2L,
2L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 1L), .Label = c("F", "M"), class = "factor")), .Names = c("District",
"A8_HHH_hig", "A6_Sex_HHH"), row.names = c(NA, 196L), class = "data.frame")
これは、私が作成しようとしているものの例です。
structure(list(sex = structure(c(2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 1L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L,
2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L,
2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, NA, NA, NA, NA, NA,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
1L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 2L,
2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 2L,
2L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 1L), .Label = c("female", "male"), class = "factor"),
education = structure(c(9L, 9L, 9L, 9L, 8L, 9L, 5L, 9L, 9L,
8L, 9L, 9L, 9L, 9L, 9L, 9L, 2L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 3L, 9L, 3L, 9L, 9L, 9L, 9L, 7L, 7L, 8L, 6L, 9L, 9L,
8L, 9L, 9L, 8L, 6L, 9L, 9L, 9L, 9L, 8L, 6L, 9L, 9L, 9L, 6L,
9L, 9L, 1L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 4L, 9L, 6L, 9L, 9L, 9L, 9L, 6L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 8L, 6L, 8L, 9L, 9L, 9L, 6L, 6L, 3L, 6L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 6L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 6L, 9L, 9L, 9L,
3L, NA, NA, NA, NA, NA, 6L, 6L, 6L, 9L, 6L, 6L, 9L, 3L, 3L,
3L, 3L, 3L, 7L, 6L, 6L, 8L, 3L, 1L, 3L, 6L, 8L, 9L, 9L, 9L,
6L, 9L, 7L, 5L, 3L, 12L, 3L, 3L, 3L, 8L, 9L, 9L, 9L, 9L,
6L, 8L, 7L, 12L, 6L, 6L, 6L, 6L, 7L, 6L, 6L, 6L, 6L, 7L,
6L, 9L, 9L, 6L, 9L, 12L, 6L, 6L, 9L, 9L, 9L, 9L, 9L, 9L,
6L, 9L, 8L, 8L, 9L, 11L, 3L, 3L, 9L, 9L, 3L, 9L, 9L, 9L,
6L, 6L, 7L, 10L, 7L, 9L, 10L, 4L, 9L, 6L, 8L, 8L, 9L, 8L,
8L, 3L, 8L, 1L, 4L, 6L, 1L, 8L, 8L, 8L, 8L, 8L, 8L, 2L, 8L,
8L, 3L, 8L, 8L, 8L, 8L, 8L, 3L, 8L, 8L, 8L, 2L, 8L, 7L, 3L,
3L, 3L, 3L, 9L, 9L, 9L, 9L, 2L, 6L, 6L, 4L, 6L, 6L, 9L, 9L,
6L, 8L, 6L, 6L, 6L, 9L, 9L, 6L, 6L, 9L, 9L, 9L, 9L, 9L, 6L,
9L, 9L, 9L, 9L, 9L, 8L, 8L, 9L, 9L, 7L, 9L, 9L, 6L, 5L, 9L,
9L, 6L, 9L, 8L, 4L, 9L, 9L, 6L, 12L, 9L, 9L, 9L, 4L, 6L,
6L, 9L, 9L, 6L, 6L, 6L, 9L, 6L, 6L, 9L, 9L, 9L, 1L), .Label = c("Adult Education",
"Junior Secondary", "Koranic", "NCE", "None", "Polytechnic",
"Senior Primary", "Senior Secondary", "University", "Junior Primary",
"Prelim / JMB", "Technical College"), class = "factor"),
district = c("Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Angwan Rimi", "Angwan Rimi", "Angwan Rimi", "Angwan Rimi",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa", "Barnawa",
"Barnawa", "Barnawa", "Barnawa", "Barnawa")), .Names = c("sex",
"education", "district"), row.names = c("1", "2", "3", "4", "5",
"6", "7", "9", "10", "11", "12", "13", "14", "15", "16", "17",
"19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29",
"30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "40",
"41", "42", "43", "44", "46", "47", "48", "49", "50", "51", "52",
"53", "54", "55", "56", "57", "58", "59", "60", "61", "62", "63",
"64", "65", "66", "67", "68", "69", "70", "71", "72", "73", "74",
"75", "76", "77", "78", "79", "80", "81", "82", "83", "84", "85",
"86", "87", "88", "89", "90", "91", "92", "93", "94", "95", "96",
"97", "98", "99", "100", "101", "102", "103", "104", "105", "106",
"107", "108", "109", "110", "111", "113", "114", "115", "116",
"117", "118", "119", "120", "121", "122", "123", "124", "125",
"126", "127", "128", "129", "130", "131", "132", "133", "134",
"135", "136", "137", "138", "139", "1361", "1371", "1381", "1391",
"140", "141", "142", "143", "144", "145", "146", "147", "148",
"149", "150", "151", "152", "153", "154", "155", "156", "157",
"158", "159", "160", "161", "162", "163", "164", "165", "166",
"167", "168", "169", "170", "171", "172", "173", "174", "175",
"176", "177", "178", "179", "180", "181", "182", "183", "184",
"185", "186", "187", "188", "189", "190", "191", "192", "193",
"194", "195", "196", "197", "198", "199", "200", "201", "202",
"203", "204", "205", "206", "207", "208", "209", "210", "211",
"212", "213", "214", "215", "216", "217", "218", "219", "220",
"221", "222", "223", "224", "225", "226", "227", "228", "229",
"230", "231", "232", "233", "234", "235", "236", "237", "238",
"239", "240", "241", "242", "243", "244", "245", "246", "247",
"248", "249", "250", "251", "252", "253", "254", "255", "256",
"257", "258", "259", "260", "261", "262", "263", "264", "265",
"266", "267", "268", "269", "270", "271", "272", "273", "274",
"275", "276", "277", "278", "279", "280", "281", "282", "283",
"284", "285", "286", "287", "288", "289", "290", "291", "292",
"293", "294", "295", "296", "297", "298", "299", "300", "301",
"302", "303", "304", "305", "306", "307", "308", "309", "310",
"311", "312", "313", "314", "315", "316", "317", "318", "319",
"320", "321", "322", "323", "324", "325", "326", "327", "328",
"329", "330", "331"), class = "data.frame")