-5

多項式関数と有理関数をベクトルとして操作するPolynomialandクラスがあります。、、、およびRationalの非メンバー演算子を定義しましたが、それらを正しく使用する方法を理解していないと思います (以下のコードを参照)。*/+-

#include<iostream>
#include<algorithm>
#include<iterator>
#include<functional>
#include<vector>
#include<cmath>

using namespace std;

class Polynomial
{
public:
    Polynomial();
    Polynomial(vector<int>coeffs);
    friend class Rational;
     Accessors
    int Degree() const;
    int Coefficient(int k) const;
    void print() const;
    int get_size() const;
    vector<int> get_vect() const; // THIS RETURNS coefficient.
    void set_vect(vector<int> input); // THIS SETS coefficient TO AN INPUTTED VECTOR OF INTEGERS.
    void constantMultiply(int x);
    void Transform();
    double evaluateAt(double x);

    Polynomial& operator++();
    Polynomial operator++ (int unused);
    Polynomial& operator--();
    Polynomial operator-- (int unused);
    Polynomial& operator+=(Polynomial name1);
    Polynomial& operator-=(Polynomial name2);
    Polynomial& operator*=(Polynomial name3);

private:
    vector<int> coefficient;
};

 poly1 + poly2
Polynomial Add(const Polynomial & poly1, const Polynomial & poly2);
 poly1 - poly2
Polynomial Subtract(const Polynomial & poly1, const Polynomial & poly2);
 poly1 * poly2
Polynomial Multiply(const Polynomial & poly1, const Polynomial & poly2);

int zero_detect( vector<int> a , int j);
vector<int> flip( vector<int> input );

class Rational
{
public:
    Rational();
    Rational(Polynomial p);
    Rational(Polynomial pN, Polynomial pD);
    double evaluateAt(double x);
    void print();
    Rational& operator++();
    Rational operator++(int unused);
    Rational& operator--();
    Rational operator--(int unused);
    Rational& operator+=(Rational name1);
    Rational& operator-=(Rational name1);
    Rational& operator*=(Rational name1);
    Rational& operator/=(Rational name1);
    Polynomial get_poly_top(); // SOME SIMPLE ACCESSORS.
    Polynomial get_poly_bot();
private:
    Polynomial top;
    Polynomial bot;
};

Polynomial operator+ (Polynomial a , Polynomial b);
Polynomial operator- (Polynomial a , Polynomial b);
Polynomial operator* (Polynomial a , Polynomial b);

Rational operator+ (Rational a , Rational b);
Rational operator- (Rational a , Rational b);
Rational operator* (Rational a , Rational b);
Rational operator/ (Rational a , Rational b);

bool operator== (Polynomial a , Polynomial b);
bool operator!= (Polynomial a , Polynomial b);
bool operator< (Polynomial a , Polynomial b);
bool operator> (Polynomial a , Polynomial b);
Polynomial sign_swap(Polynomial input); // THIS NEGATES HE COEFFICIENT CELLS, AND HELPS WITH DEFINING SUBTRACTION OFF OF ADDITION.

int main(void)
{
    cout << "Welcome! Please input the coefficients of the first polynomial, p." << endl;
    cout << "When you are finished, enter -1234." << endl;

    vector<int> user_vect1;
    vector<int> user_vect2;

    int input1;
    do
    {
        cin >> input1;
        if(input1 == -1234)
        {
            continue;
        }
        else
        {
            user_vect1.push_back(input1);
        }
    }while(input1 != -1234); // THIS IS THE USER INPUT GADGET.

    cout << endl << endl;

    cout << "Your first polynomial is ";

    Polynomial user_poly1(user_vect1);
    Polynomial temp_poly1(user_vect1);
    user_poly1.print();

    cout << "." << endl;

    cout << "Its transform is ";

    user_poly1.Transform();
    user_poly1.print();

    cout << "." << endl << endl;

    cout << "Please input the coefficients of the second polynomial, q." << endl;

    int input2;
    do
    {
        cin >> input2;
        if(input2 == -1234)
        {
            continue;
        }
        else
        {
            user_vect2.push_back(input2);
        }
    }while(input2 != -1234);

    cout << endl << endl;

    cout << "Your second polynomial is ";

    Polynomial user_poly2(user_vect2);
    Polynomial temp_poly2(user_vect2); // I WANTED A TEMPORARY POLYNOMIAL BECAUSE user_poly(i) GETS TRANSFORMED LATER.
    user_poly2.print();

    cout << "." << endl;

    cout << "Its transform is ";

    user_poly2.Transform();
    user_poly2.print();

    cout << "." << endl << endl;

    cout << "p(x)+q(x) = ";
    /*FUNCTION CALL*/
    (temp_poly1+temp_poly2).print();
    cout << endl << endl;

    cout << "p(x)-q(x) = ";
    /* FUNCTION CALL */
    (temp_poly1-temp_poly2).print();
    cout << endl << endl;

    cout << "p(x)*q(x) = ";
    /*FUNCTION CALL */
    (temp_poly1*temp_poly2).print();
    cout << endl << endl;

    cout << "p(x)/q(x) = ";
    /*FUNCTION CALL*/
    Rational user_rat1(temp_poly1,temp_poly2);
    user_rat1.print();
    cout << endl << endl;

    cout << "p(x)/q(x) + p(x)*q(x) = ";
    /*FUNCTION CALL*/
    Rational user_rat2(temp_poly1+(temp_poly1)*(temp_poly2*temp_poly2),temp_poly2);
    (user_rat2).print();
    cout << endl << endl;

    cout << "p(x)+1 = ";
    /*FUNCTION CALL*/
    (++temp_poly1).print();
    cout << endl << endl;

    cout << "p(x)+2 = ";
    /*FUNCTION CALL*/
    (++temp_poly1).print();
    cout << endl << endl;
    --(--temp_poly1);

    cout << "(p(x)/q(x))*(1+x^2-3x^4) = ";
    /*FUNCTION CALL*/
    vector<int> temp_insert;
    temp_insert.push_back(1);
    temp_insert.push_back(0);
    temp_insert.push_back(1);
    temp_insert.push_back(0);
    temp_insert.push_back(-3); // HERE I'M PUSHING THE VALUES OF THE DESIRED POLYNOMIAL INTO temp_insert.
    Polynomial temporary(temp_insert);
    Rational temp_rat1(temporary);
    (user_rat1*temp_rat1).print(); // <-- RIGHT HERE IS THE BIGGEST ISSUE I'M HAVING. IT'S NOT .print() I DON'T THINK.
    cout << endl << endl;

    cout << "Does p(x) equal q(x)? ";
    /*FUNCTION CALL*/ //<--- Should be a function that is a void, but outputs "Yes." or "No."
    if( temp_poly1 == temp_poly2 )
    {
        cout << "Yes.";
    }
    else
    {
        cout << "No.";
    }
    cout << endl << endl;

    cout << "Is p(x) < q(x)? ";
    /*FUNCTION CALL*/ //<--- Should be a function that is a void, but outputs "Yes." or "No."
    if( temp_poly1 < temp_poly2 )
    {
        cout << "Yes.";
    }
    else
    {
        cout << "No.";
    }
    cout << endl << endl;

    cout << "p(2) = ";
    /*FUNCTION CALL*/
    temp_poly1.evaluateAt(2);
    cout << endl << endl;

    cout << "p(3)/q(3)= ";
    /*FUNCTION CALL*/
    double fun1 = temp_poly1.evaluateAt(3);
    double fun2 = temp_poly2.evaluateAt(3);
    cout << fun1/fun2;
    cout << endl << endl;
};

Polynomial::Polynomial()
{
    coefficient.push_back(0);
}

Polynomial::Polynomial(vector<int> coeffs)
{
    coefficient = coeffs;
}

int Polynomial::Degree() const
{
    int deg = 0;
    for (size_t i = 0; i < coefficient.size(); ++i)
    {
        if (coefficient[i] != 0)
        {
            deg = i;
        }
    }
    return deg;
}

int Polynomial::Coefficient(int k) const
{
    return coefficient[k + 1];
}

void Polynomial::print() const
{
    for( size_t i = 0 ; i < coefficient.size() ; ++i )
    {
        if( coefficient[i] == 0 )
        {
            continue;
        }
        else
        {
            if( i == 0 )
            {
                cout << coefficient[i];
            }
            else
            {
                if(zero_detect(coefficient, i) == i)
                {
                    if( coefficient[i] == 1 || coefficient[i] == -1 )
                    {
                        if( coefficient[i] == 1)
                        {
                            cout << "";
                        }
                        else
                        {
                            cout << "-";
                        }
                    }
                    else
                    {
                        cout << coefficient[i];
                    }
                    if( i == 1 )
                    {
                        cout << "x";
                    }
                    else
                    {
                        cout << "x^" << i;
                    }
                }
                else
                {
                    cout << "+";
                    if( coefficient[i] == 1 || coefficient[i] == -1 )
                    {
                        if( coefficient[i] == 1)
                        {
                            cout << "";
                        }
                        else
                        {
                            cout << "-";
                        }
                    }
                    else
                    {
                        cout << coefficient[i];
                    }
                    if( i == 1 )
                    {
                        cout << "x";
                    }
                    else
                    {
                        cout << "x^" << i;
                    }
                }
            }
        }   
    }
}

int Polynomial::get_size() const
{
    return coefficient.size();
}

vector<int> Polynomial::get_vect() const
{
    return coefficient;
}

void Polynomial::constantMultiply(int x)
{
    for( size_t i = 0 ; i < coefficient.size() ; ++i )
    {
        coefficient[i] *= x;
    }
}

void Polynomial::Transform()
{
    vector<int> transform;
    for( size_t i = 1 ; i < coefficient.size() ; ++i )
    {
        transform.push_back(coefficient[i]*i);
    }
    coefficient = transform;
}

double Polynomial::evaluateAt(double x)
{
    double product=0;
    for(size_t i = 0 ; i < coefficient.size() ; ++i )
    {
        product += (double)coefficient[i]*pow(x,(double)i);
    }
    return product;
}

Polynomial Add(const Polynomial& poly1, const Polynomial& poly2)
{
    vector<int> Poly1 = poly1.get_vect();
    vector<int> Poly2 = poly2.get_vect();
    vector<int> Poly3;

    if( Poly1.size() < Poly2.size() )
    {
        for(size_t i = Poly1.size() ; i< Poly2.size() ; ++i )
        {
            Poly1.push_back(0);
        }
    }
    else if( Poly1.size() > Poly2.size() )
    {
        for(size_t i = Poly2.size() ; i< Poly1.size() ; ++i )
        {
            Poly2.push_back(0);
        }
    }
    for( size_t i = 0 ; i < max(Poly1.size(),Poly2.size()) ; ++i )
    {
        Poly3.push_back(Poly1[i]+Poly2[i]);
    }
    return Poly3;
}

Polynomial Subtract(const Polynomial & poly1, const Polynomial & poly2)
{
    vector<int> Poly1 = poly1.get_vect();
    vector<int> Poly2 = poly2.get_vect();
    vector<int> Poly3;

    if( Poly1.size() < Poly2.size() )
    {
        for(size_t i = Poly1.size() ; i< Poly2.size() ; ++i )
        {
            Poly1.push_back(0);
        }
    }
    else if( Poly1.size() > Poly2.size() )
    {
        for(size_t i = Poly2.size() ; i< Poly1.size() ; ++i )
        {
            Poly2.push_back(0);
        }
    }
    for( size_t i = 0 ; i < max(Poly1.size(),Poly2.size()) ; ++i )
    {
        Poly3.push_back(Poly1[i]-Poly2[i]);
    }
    return Poly3;
}

Polynomial Multiply(const Polynomial & poly1, const Polynomial & poly2)
{
    if( poly2.get_size()==1 && poly2.Coefficient(0)==1)
    {
        return poly1;
    }
    else
    {
        vector<int> Poly1 = poly1.get_vect();
        vector<int> Poly2 = poly2.get_vect();
        vector<int> Poly3;

        Poly3.resize(Poly1.size() + Poly2.size() - 1, 0);

        for (size_t i = 0; i != Poly1.size(); i++)
            for (size_t j = 0; j != Poly2.size(); j++)
                Poly3[i+j] += Poly1[i] * Poly2[j];

        return Poly3;
    }
}

int zero_detect( vector<int> a , int j)
{
    int count=0;
    for( size_t i = 0 ; i < j ; ++i )
    {
        if( a[i] == 0 )
        {
            ++count;
        }
    }
    return count;
}

Rational::Rational()
{
    vector<int> temp;
    temp.push_back(0);
    top.set_vect(temp);
    ++bot;
}

Rational::Rational(Polynomial p)
{
    top = p;
    ++bot;
}

Rational::Rational(Polynomial pN, Polynomial pD)
{
    top = pN;
    bot = pD;
}

double Rational::evaluateAt(double x)
{
    return top.evaluateAt(x)/bot.evaluateAt(x);
}

void Rational::print()
{
    top.print();
    cout << " / ";
    bot.print();
}

Polynomial operator+ (Polynomial a , Polynomial b)
{
    return Add(a,b);
}
Polynomial operator- (Polynomial a , Polynomial b)
{
    return Subtract(a,b);
}
Polynomial operator* (Polynomial a , Polynomial b)
{
    return Multiply(a,b);
}

Rational operator+ (Rational a , Rational b)
{
    Rational c((a.get_poly_top()*b.get_poly_bot())+(b.get_poly_top()*a.get_poly_bot()), a.get_poly_bot()*b.get_poly_bot());
    return c;
}
Rational operator- (Rational a , Rational b)
{
    Rational c((a.get_poly_top()*b.get_poly_bot())+(sign_swap(b.get_poly_top()*a.get_poly_bot())), a.get_poly_bot()*b.get_poly_bot());
    return c;
}
Rational operator* (Rational a , Rational b)
{
    Rational c(a.get_poly_top()*b.get_poly_top(), a.get_poly_bot()*b.get_poly_bot());
    return c;
}
Rational operator/ (Rational a , Rational b)
{
    Rational c(a.get_poly_top()*b.get_poly_bot(), a.get_poly_bot()*b.get_poly_top());
    return c;
}

Rational& Rational::operator++()
{
    Rational c(bot, bot);
    return *this+c;
}

Rational Rational::operator++(int unused)
{
    Rational copy(*this);
    Rational c(bot, bot);
    *this = *this+c;
    return copy;
}
Rational& Rational::operator--()
{
    Rational c(bot, bot);
    return *this-c;
}

Rational Rational::operator--(int unused)
{
    Rational copy(*this);
    Rational c(bot, bot);
    *this = *this-c;
    return copy;
}

bool operator== (Polynomial a , Polynomial b)
{
    vector<int>temp1=a.get_vect();
    vector<int>temp2=b.get_vect();
    if( a.Degree() != b.Degree() )
    {
        return false;
    }
    else
    {
        for(size_t i = 0 ; i<a.get_size() ; ++i)
        {
            if( temp1[i]!= temp2[i])
            {
                return false;
            }
        }
        return true;
    }
}
bool operator!= (Polynomial a , Polynomial b)
{
    return !(a==b);
}
bool operator< (Polynomial a , Polynomial b)
{
    if(a.Degree() < b.Degree())
    {
        return true;
    }
    else
    {
        return false;
    }
}
bool operator> (Polynomial a , Polynomial b)
{
    if(a.Degree() > b.Degree())
    {
        return true;
    }
    else
    {
        return false;
    }
}

Polynomial Rational::get_poly_top()
{
    return top;
}

Polynomial Rational::get_poly_bot()
{
    return bot;
}

Polynomial sign_swap(Polynomial input)
{
    vector<int> temp = input.get_vect();
    for(size_t i = 0 ; i<input.get_size() ; ++i )
    {
        temp[i] *=-1;
    }
    input.set_vect(temp);
    return input;
}

void Polynomial::set_vect(vector<int> input)
{
    coefficient = input;
}

Polynomial& Polynomial::operator++()
{
    coefficient[0]++;
    return *this;
}
Polynomial Polynomial::operator++ (int unused) // &
{
    Polynomial copy(*this);
    coefficient[0]++;
    return copy;
}
Polynomial& Polynomial::operator--()
{
    coefficient[0]--;
    return *this;
}
Polynomial Polynomial::operator-- (int unused) // &
{
    Polynomial copy(*this);
    coefficient[0]--;
    return copy;
}
Polynomial& Polynomial::operator+=(Polynomial name1)
{
    return Add(*this, name1);
}
Polynomial& Polynomial::operator-=(Polynomial name2)
{
    return Subtract(*this, name2);
}
Polynomial& Polynomial::operator*=(Polynomial name3)
{
    return Multiply(*this, name3);  
}

コード内のベクトル プロセスに範囲外の問題があるというエラーが表示されます。


ノート:

プログラミングのクラスを受講していて、これがたまたまあなたの課題である場合は、このコードをコピーしてソースに貼り付けたり、自分の利益のために使用したりしないでください。代わりに、問題が発生した場合に構築するための基盤として使用してください。


この合理的な乗算の問題、または非効率的、冗長、役に立たないと思われるものを解決するための助けをいただければ幸いです。ありがとうございました。:-)


問題:

クラスに対するRationalクラスを作成しました。引数が 1 つのコンストラクターは、その最上位の多項式をに設定します。これはデータ型がであり、最下位の多項式をと同じデータ型である に設定します。で手動で生成したベクトルを渡すこの 1 つの引数のコンストラクターを使用してオブジェクトを作成しましたが、2 つの有理オブジェクトの積を出力しようとすると、最初のオブジェクトはであり、 と1 (1 多項式) -- ベクトルの境界が範囲外であるというエラーが表示されます。理由がわかりません...friendPolynomialRational( Polynomial p)toppPolynomialbot1topRationalmainmainuser_rat1top=pbot=

4

1 に答える 1

0

ソース:

Polynomial Multiply(const Polynomial & poly1, const Polynomial & poly2)
{
    if( poly2.get_size()==1 && poly2.Coefficient(0)==1)

問題のある方法:

int Polynomial::Coefficient(int k) const
{
    return coefficient[k + 1];
}

サイズが 1 の場合、 にしか到達できずcoefficient[0]k + 1ここに があり1ます。次のことを意味している可能性があります。

int Polynomial::Coefficient(int k) const
{
    return coefficient[k];
}
于 2013-08-14T23:39:55.967 に答える