0

この関数は、CUDA を使用して対称行列 - 行列乗算を実行します。非対称版の「cublas{t}gemm()」を使うことには成功しましたが、「cublas{t}symm()」関数をうまく使えませんでした。

CUBLAS ライブラリが列優先の行列ストレージを使用していることは知っています。私は行優先の C/C++ 行列を使用しており、入力行列などを置き換えることで「cublas{t}gemm()」の問題を解決する方法を知っています。ただし、対称の場合は解決できませんでした。問題は、列優先の行列ストレージを使用しても、予期しない結果が得られることです。行列には複素浮動小数点 (cuComplex) が含まれます。行優先の行列があるとします。コードと出力は次のとおりです。

// Matrix multiplication: C = A * B.
// Host code.
//

// Utilities and system includes
#include <assert.h>
#include <helper_string.h>  // helper for shared functions common to CUDA SDK samples

// CUDA runtime
#include <cuda_runtime.h>
#include <cublas_v2.h>

#ifndef min
#define min(a,b) ((a < b) ? a : b)
#endif
#ifndef max
#define max(a,b) ((a > b) ? a : b)
#endif

////////////////////////////////////////////////////////////////////////////////
// These are CUDA Helper functions (in addition to helper_cuda.h)

void inline checkError(cublasStatus_t status, const char *msg)
{
    if (status != CUBLAS_STATUS_SUCCESS)
    {
        printf("%s", msg);
        exit(EXIT_FAILURE);
    }
}
// end of CUDA Helper Functions

// Allocates a matrix with random float entries.
void randomCmplxInit(cuComplex *data, int size)
{
    for (int i = 0; i < size; ++i)
        data[i] = make_cuComplex( rand() / (float)RAND_MAX, rand() / (float)RAND_MAX);
}


//void initializeCUDA(int argc, char **argv, int &devID, int &iSizeMultiple, sMatrixSize &matrix_size)
void initializeCUDA(int argc, char **argv, int &devID)
{
    // By default, we use device 0, otherwise we override the device ID based on what is provided at the command line
    cudaError_t error;
    devID = 0;
    int m,n,k;

    if (checkCmdLineFlag(argc, (const char **)argv, "device"))
    {
        devID = getCmdLineArgumentInt(argc, (const char **)argv, "device");
        error = cudaSetDevice(devID);

        if (error != cudaSuccess)
        {
            printf("cudaSetDevice returned error code %d, line(%d)\n", error, __LINE__);
            exit(EXIT_FAILURE);
        }
    }

    // get number of SMs on this GPU
    error = cudaGetDevice(&devID);
    cudaDeviceProp deviceProp;
    error = cudaGetDeviceProperties(&deviceProp, devID);

    printf("GPU Device %d: \"%s\" with compute capability %d.%d\n\n", devID, deviceProp.name, deviceProp.major, deviceProp.minor);

    // use a larger block size for Fermi and above
    int block_size = (deviceProp.major < 2) ? 16 : 32;
}

////////////////////////////////////////////////////////////////////////////////
//! Run a simple test matrix multiply using CUBLAS
////////////////////////////////////////////////////////////////////////////////
int matrixMultiply(int argc, char **argv, int devID)
{
    int i,j;
    unsigned int m,n,k; 
    cudaDeviceProp deviceProp;
    cudaError_t error;

    error = cudaGetDeviceProperties(&deviceProp, devID);

    if (error != cudaSuccess)
    {
        printf("cudaGetDeviceProperties returned error code %d, line(%d)\n", error, __LINE__);
        exit(EXIT_FAILURE);
    }

    // use a larger block size for Fermi and above
    int block_size = (deviceProp.major < 2) ? 16 : 32;

    m=3; //number of rows of matrix op(A) and C.  A--> (m x k)
    n=2; //number of columns of matrix op(B) and C. B--> (k x n)
    k=m; //number of columns of op(A) and rows of op(B). C--> (m x n)

    // I want to compute C = A*B in row-major format, 
    //so I must find C(T)=B(T)A(T) = C(T)A in column-major format 

    // allocate host memory for matrices A and B
    unsigned int size_A = m*(m+1)/2; //size of a symmetric matrix 
    unsigned int mem_size_A = sizeof(cuComplex) * size_A;
    cuComplex *h_A = (cuComplex *)malloc(mem_size_A);

    unsigned int size_B = m*n;
    unsigned int mem_size_B = sizeof(cuComplex) * size_B;
    cuComplex *h_B = (cuComplex *)malloc(mem_size_B);

    // initialize host memory
    for (i = 0; i < size_A; ++i)
    h_A[i] = make_cuComplex( (float)(i+1),(float)0);

    for (i = 0; i < size_B; ++i)
    h_B[i] = make_cuComplex((float)(i+2), (float)0);

    // allocate device memory
    cuComplex *d_A, *d_B, *d_C;
    unsigned int size_C = m*n;
    unsigned int mem_size_C = sizeof(cuComplex) * size_C;

    // allocate host memory for the result
    cuComplex *h_C      = (cuComplex *) malloc(mem_size_C);
    cuComplex *h_CUBLAS = (cuComplex *) malloc(mem_size_C);

    error = cudaMalloc((void **) &d_A, mem_size_A);
    error = cudaMalloc((void **) &d_B, mem_size_B);

    // copy host memory to device
    error = cudaMemcpy(d_A, h_A, mem_size_A, cudaMemcpyHostToDevice);
    error = cudaMemcpy(d_B, h_B, mem_size_B, cudaMemcpyHostToDevice);
    error = cudaMalloc((void **) &d_C, mem_size_C);

    // setup execution parameters
    dim3 threads(block_size, block_size);
    dim3 grid(n / threads.x, m / threads.y);

    // create and start timer
    printf("Computing result using CUBLAS...");

    // CUBLAS version 2.0
    {
        cublasHandle_t handle;
        cublasStatus_t ret;

        ret = cublasCreate(&handle);

        if (ret != CUBLAS_STATUS_SUCCESS)
        {
            printf("cublasCreate returned error code %d, line(%d)\n", ret, __LINE__);
            exit(EXIT_FAILURE);
        }

        const cuComplex alpha = make_cuComplex(1.0f,0.0f);
        const cuComplex beta  = make_cuComplex(0.0f,0.0f);
        //Perform operation with cublas
        ret = cublasCsymm(handle, CUBLAS_SIDE_RIGHT, CUBLAS_FILL_MODE_UPPER, n,m,&alpha,d_A,m,d_B,m,&beta,d_C,m);

        // copy result from device to host
        error = cudaMemcpy(h_CUBLAS, d_C, mem_size_C, cudaMemcpyDeviceToHost);

        checkError(cublasDestroy(handle), "cublasDestroy() error!\n");
    }


    printf ("\nComputations completed.\n\n");

    printf (" symm matrix A: \n");
    int s=0;
    for (i=0; i<min(m,4); i++) {
      for (j=0; j<=i; j++) {
        //printf ("%7.5G + j(%7.5G)", h_A[j+i*k].x,h_A[j+i*k].y);
        printf ("%7.5G", h_A[s].x); 
        s++;
      }
      printf ("\n");
    }

    printf ("\n matrix B: \n");
    for (i=0; i<min(k,4); i++) {
      for (j=0; j<min(n,4); j++) {
        //printf ("%7.5G + j(%7.5G)", h_B[j+i*n].x,h_B[j+i*n].y);
          printf ("%7.5G", h_B[j+i*n].x);
      }
      printf ("\n");
    }

    printf ("\n matrix C=A*B: \n");
    for (i=0; i<min(m,4); i++) {
      for (j=0; j<min(n,4); j++) {
        //printf ("%7.5G + j(%7.5G)", h_CUBLAS[j+i*n].x,h_CUBLAS[j+i*n].y);
          printf ("%7.5G", h_CUBLAS[j+i*n].x);
      }
      printf ("\n");
    }

    // clean up memory
    free(h_A);
    free(h_B);
    free(h_C);
    //free(reference);
    cudaFree(d_A);
    cudaFree(d_B);
    cudaFree(d_C);

    cudaDeviceReset();
}

////////////////////////////////////////////////////////////////////////////////
// Program main
////////////////////////////////////////////////////////////////////////////////
int main(int argc, char **argv)
{
    printf("[Matrix Multiply CUBLAS] - Starting...\n");
    int devID = 0, sizeMult = 5;
    initializeCUDA(argc, argv, devID);
    int matrix_result = matrixMultiply(argc, argv, devID);
}

乗算には次の行列があると思います。

A =

1     2     4
2     3     5
4     5     6

B =

 2     3
 4     5
 6     7

そして得ることを期待する

A*B =

34    41
46    56
64    79

しかし、得られたOUTPUTは次のとおりです。

symm matrix A:    
     1     
     2     3
     4     5     6

matrix B:
     2     3
     4     5
     6     7

matrix C=A*B:
    78    90
    74    97
    114    146

このコードには何が欠けていますか? 「cublasCsymm」関数の引数が間違っている可能性があります。

ありがとう、カガン

4

1 に答える 1

2

編集: 以下の質問に基づいて、回答とサンプルコードを作り直すことにしました。少なくともこれらの操作では、転置せずに行優先のストレージを処理できます。symmそして、この観察は、関数がパックされたストレージを使用しないという事実によってさらに容易になります。

したがって、追加の質問に答えるには:

  1. 関数はパック ストレージ形式を使用しません (たとえば、 cublasCspmvcublasCsymmなどの他の関数のように)。これは、この関数が、パック ストレージ形式を使用しない、対応するnetlib 関数の機能を複製することを目的としているためです。cublas API の私のレビューに基づいて、対称パック ストレージ マトリックス - マトリックス乗算関数が使用できるようには見えません。cublasCsymm
  2. hereのアドバイスに従うことで、少なくともこれらの操作 (行列-行列乗算、パック ストレージなし) については、転置せずに cublas で行優先ストレージ (たとえば C スタイル) を使用できます。

以下は、上記の項目 2 の情報を組み込んだ、前の例の再加工バージョンです。

// Matrix multiplication: C = A * B.
// Host code.
//

// Utilities and system includes
#include <assert.h>
#include <helper_string.h>  // helper for shared functions common to CUDA SDK sa
mples

// CUDA runtime
#include <cuda_runtime.h>
#include <cublas_v2.h>

// error check macros
#define cudaCheckErrors(msg) \
    do { \
        cudaError_t __err = cudaGetLastError(); \
        if (__err != cudaSuccess) { \
            fprintf(stderr, "Fatal error: %s (%s at %s:%d)\n", \
                msg, cudaGetErrorString(__err), \
                __FILE__, __LINE__); \
            fprintf(stderr, "*** FAILED - ABORTING\n"); \
            exit(1); \
        } \
    } while (0)

// for CUBLAS V2 API
#define cublasCheckErrors(fn) \
    do { \
        cublasStatus_t __err = fn; \
        if (__err != CUBLAS_STATUS_SUCCESS) { \
            fprintf(stderr, "Fatal cublas error: %d (at %s:%d)\n", \
                (int)(__err), \
                __FILE__, __LINE__); \
            fprintf(stderr, "*** FAILED - ABORTING\n"); \
            exit(1); \
        } \
    } while (0)



#ifndef min
#define min(a,b) ((a < b) ? a : b)
#endif
#ifndef max
#define max(a,b) ((a > b) ? a : b)
#endif

////////////////////////////////////////////////////////////////////////////////
// These are CUDA Helper functions (in addition to helper_cuda.h)

void inline checkError(cublasStatus_t status, const char *msg)
{
    if (status != CUBLAS_STATUS_SUCCESS)
    {
        printf("%s", msg);
        exit(EXIT_FAILURE);
    }
}
// end of CUDA Helper Functions

// Allocates a matrix with random float entries.
void randomCmplxInit(cuComplex *data, int size)
{
    for (int i = 0; i < size; ++i)
        data[i] = make_cuComplex( rand() / (float)RAND_MAX, rand() / (float)RAND
_MAX);
}


//void initializeCUDA(int argc, char **argv, int &devID, int &iSizeMultiple, sMa
trixSize &matrix_size)
void initializeCUDA(int argc, char **argv, int &devID)
{
    // By default, we use device 0, otherwise we override the device ID based on
 what is provided at the command line
    cudaError_t error;
    devID = 0;

    if (checkCmdLineFlag(argc, (const char **)argv, "device"))
    {
        devID = getCmdLineArgumentInt(argc, (const char **)argv, "device");
        error = cudaSetDevice(devID);

        if (error != cudaSuccess)
        {
            printf("cudaSetDevice returned error code %d, line(%d)\n", error, __
LINE__);
            exit(EXIT_FAILURE);
        }
    }

    // get number of SMs on this GPU
    error = cudaGetDevice(&devID);
    cudaDeviceProp deviceProp;
    error = cudaGetDeviceProperties(&deviceProp, devID);

    printf("GPU Device %d: \"%s\" with compute capability %d.%d\n\n", devID, dev
iceProp.name, deviceProp.major, deviceProp.minor);

}


////////////////////////////////////////////////////////////////////////////////
//! Run a simple test matrix multiply using CUBLAS
////////////////////////////////////////////////////////////////////////////////
int matrixMultiply(int argc, char **argv, int devID)
{
    int i,j;
    unsigned int m,n,k;
    cudaDeviceProp deviceProp;
    cudaError_t error;

    error = cudaGetDeviceProperties(&deviceProp, devID);

    if (error != cudaSuccess)
    {
        printf("cudaGetDeviceProperties returned error code %d, line(%d)\n", error, __LINE__);
        exit(EXIT_FAILURE);
    }

    // use a larger block size for Fermi and above

    m=3; //number of rows of matrix op(A) and C.  A--> (m x k)
    n=2; //number of columns of matrix op(B) and C. B--> (k x n)
    k=m; //number of columns of op(A) and rows of op(B). C--> (m x n)

    // I want to compute C = A*B in row-major format,
    //so I must find C(T)=B(T)A(T) = C(T)A in column-major format

    // allocate host memory for matrices A and B
    unsigned int size_A = m*m; //size of a symmetric matrix
    printf("size_A = %d\n", size_A);
    unsigned int mem_size_A = sizeof(cuComplex) * size_A;
    cuComplex *h_A = (cuComplex *)malloc(mem_size_A);

    unsigned int size_B = m*n;
    unsigned int mem_size_B = sizeof(cuComplex) * size_B;
    cuComplex *h_B = (cuComplex *)malloc(mem_size_B);

    // initialize host memory
//    for (i = 0; i < size_A; ++i)
//    h_A[i] = make_cuComplex( (float)(i+1),(float)0);
    h_A[0] = make_cuComplex((float)1, (float)0);
    h_A[1] = make_cuComplex((float)2, (float)0);
    h_A[2] = make_cuComplex((float)4, (float)0);
    h_A[3] = make_cuComplex((float)0, (float)0);
    h_A[4] = make_cuComplex((float)3, (float)0);
    h_A[5] = make_cuComplex((float)5, (float)0);
    h_A[6] = make_cuComplex((float)0, (float)0);
    h_A[7] = make_cuComplex((float)0, (float)0);
    h_A[8] = make_cuComplex((float)6, (float)0);

//    for (i = 0; i < size_B; ++i)
//    h_B[i] = make_cuComplex((float)(i+2), (float)0);
    h_B[0] = make_cuComplex((float)2, (float)0);
    h_B[1] = make_cuComplex((float)3, (float)0);
    h_B[2] = make_cuComplex((float)4, (float)0);
    h_B[3] = make_cuComplex((float)5, (float)0);
    h_B[4] = make_cuComplex((float)6, (float)0);
    h_B[5] = make_cuComplex((float)7, (float)0);

    // allocate device memory
    cuComplex *d_A, *d_B, *d_C;
    unsigned int size_C = m*n;
    unsigned int mem_size_C = sizeof(cuComplex) * size_C;

    // allocate host memory for the result
    cuComplex *h_C      = (cuComplex *) malloc(mem_size_C);
    cuComplex *h_CUBLAS = (cuComplex *) malloc(mem_size_C);

    error = cudaMalloc((void **) &d_A, mem_size_A);
    error = cudaMalloc((void **) &d_B, mem_size_B);

    // copy host memory to device
    error = cudaMemcpy(d_A, h_A, mem_size_A, cudaMemcpyHostToDevice);
    error = cudaMemcpy(d_B, h_B, mem_size_B, cudaMemcpyHostToDevice);
    error = cudaMalloc((void **) &d_C, mem_size_C);


    // create and start timer
    printf("Computing result using CUBLAS...");

    // CUBLAS version 2.0
    {
        cublasHandle_t handle;
        cublasStatus_t ret;

        ret = cublasCreate(&handle);

        if (ret != CUBLAS_STATUS_SUCCESS)
        {
            printf("cublasCreate returned error code %d, line(%d)\n", ret, __LINE__);
            exit(EXIT_FAILURE);
        }

        const cuComplex alpha = make_cuComplex(1.0f,0.0f);
        const cuComplex beta  = make_cuComplex(0.0f,0.0f);
        //Perform operation with cublas
        ret = cublasCsymm(handle, CUBLAS_SIDE_RIGHT, CUBLAS_FILL_MODE_LOWER, n,m,&alpha,d_A,m,d_B,n,&beta,d_C,n);

        if (ret != CUBLAS_STATUS_SUCCESS)
        {
            printf("cublasCsymm returned error code %d, line(%d)\n", ret, __LINE__);
            exit(EXIT_FAILURE);
        }

        // copy result from device to host
        error = cudaMemcpy(h_CUBLAS, d_C, mem_size_C, cudaMemcpyDeviceToHost);

        checkError(cublasDestroy(handle), "cublasDestroy() error!\n");
    }


    printf ("\nComputations completed.\n\n");

    printf (" symm matrix A: \n");
//    int s=0;
    for (i=0; i<min(m,4); i++) {
      for (j=0; j<min(m,4); j++) {
        //printf ("%7.5G + j(%7.5G)", h_A[j+i*k].x,h_A[j+i*k].y);
//        printf ("%7.5G", h_A[s].x);
        printf ("%7.5G", h_A[j+(i*m)].x);
//        s++;
      }
      printf ("\n");
    }

    printf ("\n matrix B: \n");
    for (i=0; i<min(k,4); i++) {
      for (j=0; j<min(n,4); j++) {
        //printf ("%7.5G + j(%7.5G)", h_B[j+i*n].x,h_B[j+i*n].y);
          printf ("%7.5G", h_B[j+(i*n)].x);
      }
      printf ("\n");
    }

    printf ("\n matrix C=A*B: \n");
    for (i=0; i<min(m,4); i++) {
      for (j=0; j<min(n,4); j++) {
        //printf ("%7.5G + j(%7.5G)", h_CUBLAS[j+i*n].x,h_CUBLAS[j+i*n].y);
          printf ("%7.5G", h_CUBLAS[j+(i*n)].x);
      }
      printf ("\n");
    }

    // clean up memory
    free(h_A);
    free(h_B);
    free(h_C);
    //free(reference);
    cudaFree(d_A);
    cudaFree(d_B);
    cudaFree(d_C);

    cudaDeviceReset();
    return 0;
}

////////////////////////////////////////////////////////////////////////////////
// Program main
////////////////////////////////////////////////////////////////////////////////
int main(int argc, char **argv)
{
    printf("[Matrix Multiply CUBLAS] - Starting...\n");
    int devID = 0;
    initializeCUDA(argc, argv, devID);
    int matrix_result = matrixMultiply(argc, argv, devID);
    cudaCheckErrors("some error");
    return 0;
}
$ ./t213
[Matrix Multiply CUBLAS] - Starting...
GPU Device 0: "Tesla M2070" with compute capability 2.0

size_A = 9
Computing result using CUBLAS...
Computations completed.

 symm matrix A:
      1      2      4
      0      3      5
      0      0      6

 matrix B:
      2      3
      4      5
      6      7

 matrix C=A*B:
     34     41
     46     56
     64     79
$

元の応答:

いくつかの問題:

  • 現在投稿されているコードを実行すると、表示される結果が得られません。ここに私が得るものがあります:

    [Matrix Multiply CUBLAS] - Starting...
    GPU Device 0: "Tesla M2070" with compute capability 2.0
    
    Computing result using CUBLAS...
    Computations completed.
    
    symm matrix A:
      1
      2      3
      4      5      6
    
    matrix B:
      2      3
      4      5
      6      7
    
    matrix C=A*B:
      -131   -128
       260   -122
      -115    266
    

コードは多くの警告でコンパイルされ、適切なエラー チェックを行っていません (たとえば、からの戻り値をチェックしていません)。cublasCsymm

  • C = A*B を乗算したい これは、 A がLEFTにあることを意味しますが、に渡しCUBLAS_SIDE_RIGHTていますcublasCsymm 他のいくつかのcublasCsymmパラメーターも同様に間違っていました。(B(T)*A(T)) のようにできると思ったかもしれませんA*Bが、それは正方行列に対してのみ機能します。あなたが何を考えていたのか正確にはわかりません。

  • 行列に行優先のストレージがあり、それらを列優先の順序で解釈するcublasに渡します。次のマトリックスの場合:

    1 2
    3 4 
    

行優先のストレージは次のようになります。

    1 2 3 4

列優先のストレージは次のようになります。

    1 3 2 4

必要に応じて、これらの行列を転置しcublasCgeamたり、ストレージを使用したり、手動で変更したりできます。

  • A正しくない対称行列のある種の圧縮ストレージ形式について、ある種の仮定をしています。ストレージ タイプの定義をよく読んでください。「供給された」または「存在する」マトリックスの部分とは言いませんが、満たされるマトリックスの部分を言います。

上記の問題を修正した完全なコードを次に示します。

// Matrix multiplication: C = A * B.
// Host code.
//

// Utilities and system includes
#include <assert.h>
#include <helper_string.h>  // helper for shared functions common to CUDA SDK sa
mples

// CUDA runtime
#include <cuda_runtime.h>
#include <cublas_v2.h>

// error check macros
#define cudaCheckErrors(msg) \
    do { \
        cudaError_t __err = cudaGetLastError(); \
        if (__err != cudaSuccess) { \
            fprintf(stderr, "Fatal error: %s (%s at %s:%d)\n", \
                msg, cudaGetErrorString(__err), \
                __FILE__, __LINE__); \
            fprintf(stderr, "*** FAILED - ABORTING\n"); \
            exit(1); \
        } \
    } while (0)

// for CUBLAS V2 API
#define cublasCheckErrors(fn) \
    do { \
        cublasStatus_t __err = fn; \
        if (__err != CUBLAS_STATUS_SUCCESS) { \
            fprintf(stderr, "Fatal cublas error: %d (at %s:%d)\n", \
                (int)(__err), \
                __FILE__, __LINE__); \
            fprintf(stderr, "*** FAILED - ABORTING\n"); \
            exit(1); \
        } \
    } while (0)



#ifndef min
#define min(a,b) ((a < b) ? a : b)
#endif
#ifndef max
#define max(a,b) ((a > b) ? a : b)
#endif

////////////////////////////////////////////////////////////////////////////////
// These are CUDA Helper functions (in addition to helper_cuda.h)


void inline checkError(cublasStatus_t status, const char *msg)
{
    if (status != CUBLAS_STATUS_SUCCESS)
    {
        printf("%s", msg);
        exit(EXIT_FAILURE);
    }
}
// end of CUDA Helper Functions

// Allocates a matrix with random float entries.
void randomCmplxInit(cuComplex *data, int size)
{
    for (int i = 0; i < size; ++i)
        data[i] = make_cuComplex( rand() / (float)RAND_MAX, rand() / (float)RAND_MAX);
}


//void initializeCUDA(int argc, char **argv, int &devID, int &iSizeMultiple, sMatrixSize &matrix_size)
void initializeCUDA(int argc, char **argv, int &devID)
{
    // By default, we use device 0, otherwise we override the device ID based on what is provided at the command line
    cudaError_t error;
    devID = 0;

    if (checkCmdLineFlag(argc, (const char **)argv, "device"))
    {
        devID = getCmdLineArgumentInt(argc, (const char **)argv, "device");
        error = cudaSetDevice(devID);

        if (error != cudaSuccess)
        {
            printf("cudaSetDevice returned error code %d, line(%d)\n", error, __LINE__);
            exit(EXIT_FAILURE);
        }
    }

    // get number of SMs on this GPU
    error = cudaGetDevice(&devID);
    cudaDeviceProp deviceProp;
    error = cudaGetDeviceProperties(&deviceProp, devID);

    printf("GPU Device %d: \"%s\" with compute capability %d.%d\n\n", devID, deviceProp.name, deviceProp.major, deviceProp.minor);

}

////////////////////////////////////////////////////////////////////////////////
//! Run a simple test matrix multiply using CUBLAS
////////////////////////////////////////////////////////////////////////////////
int matrixMultiply(int argc, char **argv, int devID)
{
    int i,j;
    unsigned int m,n,k;
    cudaDeviceProp deviceProp;
    cudaError_t error;

    error = cudaGetDeviceProperties(&deviceProp, devID);

    if (error != cudaSuccess)
    {
        printf("cudaGetDeviceProperties returned error code %d, line(%d)\n", error, __LINE__);
        exit(EXIT_FAILURE);
    }

    // use a larger block size for Fermi and above

    m=3; //number of rows of matrix op(A) and C.  A--> (m x k)
    n=2; //number of columns of matrix op(B) and C. B--> (k x n)
    k=m; //number of columns of op(A) and rows of op(B). C--> (m x n)

    // I want to compute C = A*B in row-major format,
    //so I must find C(T)=B(T)A(T) = C(T)A in column-major format

    // allocate host memory for matrices A and B
    unsigned int size_A = m*m; //size of a symmetric matrix
    printf("size_A = %d\n", size_A);
    unsigned int mem_size_A = sizeof(cuComplex) * size_A;
    cuComplex *h_A = (cuComplex *)malloc(mem_size_A);

    unsigned int size_B = m*n;
    unsigned int mem_size_B = sizeof(cuComplex) * size_B;
    cuComplex *h_B = (cuComplex *)malloc(mem_size_B);

    // initialize host memory
//    for (i = 0; i < size_A; ++i)
//    h_A[i] = make_cuComplex( (float)(i+1),(float)0);
    h_A[0] = make_cuComplex((float)1, (float)0);
    h_A[1] = make_cuComplex((float)2, (float)0);
    h_A[2] = make_cuComplex((float)4, (float)0);
    h_A[3] = make_cuComplex((float)0, (float)0);
    h_A[4] = make_cuComplex((float)3, (float)0);
    h_A[5] = make_cuComplex((float)5, (float)0);
    h_A[6] = make_cuComplex((float)0, (float)0);
    h_A[7] = make_cuComplex((float)0, (float)0);
    h_A[8] = make_cuComplex((float)6, (float)0);

//    for (i = 0; i < size_B; ++i)
//    h_B[i] = make_cuComplex((float)(i+2), (float)0);
    h_B[0] = make_cuComplex((float)2, (float)0);
    h_B[1] = make_cuComplex((float)4, (float)0);
    h_B[2] = make_cuComplex((float)6, (float)0);
    h_B[3] = make_cuComplex((float)3, (float)0);
    h_B[4] = make_cuComplex((float)5, (float)0);
    h_B[5] = make_cuComplex((float)7, (float)0);

    // allocate device memory
    cuComplex *d_A, *d_B, *d_C;
    unsigned int size_C = m*n;
    unsigned int mem_size_C = sizeof(cuComplex) * size_C;

    // allocate host memory for the result
    cuComplex *h_C      = (cuComplex *) malloc(mem_size_C);
    cuComplex *h_CUBLAS = (cuComplex *) malloc(mem_size_C);

    error = cudaMalloc((void **) &d_A, mem_size_A);
    error = cudaMalloc((void **) &d_B, mem_size_B);

    // copy host memory to device
    error = cudaMemcpy(d_A, h_A, mem_size_A, cudaMemcpyHostToDevice);
    error = cudaMemcpy(d_B, h_B, mem_size_B, cudaMemcpyHostToDevice);
    error = cudaMalloc((void **) &d_C, mem_size_C);


    // create and start timer
    printf("Computing result using CUBLAS...");

    // CUBLAS version 2.0
    {
        cublasHandle_t handle;
        cublasStatus_t ret;

        ret = cublasCreate(&handle);

        if (ret != CUBLAS_STATUS_SUCCESS)
        {
            printf("cublasCreate returned error code %d, line(%d)\n", ret, __LINE__);
            exit(EXIT_FAILURE);
        }

        const cuComplex alpha = make_cuComplex(1.0f,0.0f);
        const cuComplex beta  = make_cuComplex(0.0f,0.0f);
        //Perform operation with cublas
        ret = cublasCsymm(handle, CUBLAS_SIDE_LEFT, CUBLAS_FILL_MODE_LOWER, m,n,&alpha,d_A,m,d_B,m,&beta,d_C,m);
        if (ret != CUBLAS_STATUS_SUCCESS)
        {
            printf("cublasCsymm returned error code %d, line(%d)\n", ret, __LINE__);
            exit(EXIT_FAILURE);
        }

出力は次のとおりです。

[Matrix Multiply CUBLAS] - Starting...
GPU Device 0: "Tesla M2070" with compute capability 2.0

size_A = 9
Computing result using CUBLAS...
Computations completed.

 symm matrix A:
      1      0      0
      2      3      0
      4      5      6

 matrix B:
      2      3
      4      5
      6      7

 matrix C=A*B:
     34     41
     46     56
     64     79
于 2013-08-16T21:06:43.167 に答える