速度とメモリ効率を探している場合 -data.table
救助に:
library(data.table)
dt = data.table(df)
for (i in seq_along(dt))
dt[, (i) := dt[[i]] * v[i]]
eddi = function(dt) { for (i in seq_along(dt)) dt[, (i) := dt[[i]] * v[i]] }
arun = function(df) { df * matrix(v, ncol=ncol(df), nrow=nrow(df), byrow=TRUE) }
nograpes = function(df) { data.frame(mapply(`*`,df,v,SIMPLIFY=FALSE)) }
N = 1e6
dt = data.table(A = rnorm(N), B = rnorm(N))
v = c(0,2)
microbenchmark(eddi(copy(dt)), arun(copy(dt)), nograpes(copy(dt)), times = 10)
#Unit: milliseconds
# expr min lq mean median uq max neval
# eddi(copy(dt)) 23.01106 24.31192 26.47132 24.50675 28.87794 34.28403 10
# arun(copy(dt)) 337.79885 363.72081 450.93933 433.21176 516.56839 644.70103 10
# nograpes(copy(dt)) 19.44873 24.30791 36.53445 26.00760 38.09078 95.41124 10
Arun がコメントで指摘しているようにset
、パッケージの関数を使用data.table
して、このインプレース変更をdata.frame
同様に行うこともできます。
for (i in seq_along(df))
set(df, j = i, value = df[[i]] * v[i])
もちろん、これは にも機能しdata.table
、列の数が多い場合は大幅に高速になる可能性があります。