2

CPU と GPU を使用して、RcppMAGMAを使用してRの線形代数演算を高速化しようとした人がいるかどうか疑問に思っていましたか? 先月culatoolsを試してみたところ、 Rcpp (リンク) で動作しましたが、culatoolsはすべての機能にアクセスするにはコストがかかる商用製品です。

4

1 に答える 1

5

culatoolsをいじった後、RcppMAGMAを使用するのは非常に簡単でした。.cpp ファイルは次のとおりです。

#include<Rcpp.h>
#include<magma.h>

using namespace Rcpp;

RcppExport SEXP gpuQR_magma(SEXP X_)
{    
    // Input
    NumericMatrix X(X_);

    // Initialize magma and cublas
    magma_init();
    cublasInit();

    // Declare variables 
    int info, lwork, n_rows = X.nrow(), n_cols = X.ncol(), min_mn = min(n_rows, n_cols);
    double tmp[1];
    NumericVector scale(min_mn);

    // Query workspace size
    magma_dgeqrf(n_rows, n_cols, &(X[0]), n_rows, &(scale[0]), &(work[0]), -1, &info); 
    lwork = work[0];
    NumericVector work(lwork);

    // Run QR decomposition
    magma_dgeqrf(n_rows, n_cols, &(X[0]), n_rows, &(scale[0]), &(work[0]), lwork, &info);

    // Scale factor result    
    for(int ii = 1; ii < n_rows; ii++)
    {
        for(int jj = 0; jj < n_cols; jj++)
        {
            if(ii > jj) { X[ii + jj * n_rows] *= scale[jj]; }
        }
    }

    // Shutdown magma and cublas    
    magma_finalize();
    cublasShutdown();

    // Output  
    return wrap(X);
}

ファイルは、次を使用して R から共有ライブラリにコンパイルできます。

library(Rcpp)  
PKG_LIBS <- sprintf('-Wl,-rpath,/usr/local/magma/lib -L/usr/local/magma/lib -lmagma /usr/local/magma/lib/libmagma.a -Wl,-rpath,/usr/local/cuda-5.5/lib64 %s', Rcpp:::RcppLdFlags()) 
PKG_CPPFLAGS <- sprintf('-DADD_ -DHAVE_CUBLAS -I/usr/local/magma/include -I/usr/local/cuda-5.5/include %s', Rcpp:::RcppCxxFlags())  
Sys.setenv(PKG_LIBS = PKG_LIBS , PKG_CPPFLAGS = PKG_CPPFLAGS) 
R <- file.path(R.home(component = 'bin'), 'R') 
file <- '/path/gpuQR_magma.cpp'
cmd <- sprintf('%s CMD SHLIB %s', R, paste(file, collapse = ' '))
system(cmd)

共有ライブラリをRで呼び出すことができるようになりました。結果をRqr()と比較すると、次のようになります。

dyn.load('/path/gpuQR_magma.so')

set.seed(100)
n_row <- 3; n_col <- 3
A <- matrix(rnorm(n_row * n_col), n_row, n_col)

qr(A)$qr

           [,1]       [,2]       [,3]
[1,]  0.5250957 -0.8666925  0.8594266
[2,] -0.2504899 -0.3878643 -0.1277838
[3,]  0.1502909  0.4742033 -0.8804247

.Call('gpuQR_magma', A)

           [,1]       [,2]       [,3]
[1,]  0.5250957 -0.8666925  0.8594266
[2,] -0.2504899 -0.3878643 -0.1277838
[3,]  0.1502909  0.4742033 -0.8804247

以下は、960 個の CUDA コアと OpenBLAS を備えた NVIDIA GeForce GTX 675MX GPU を使用したベンチマークの結果です。

n_row <- 3000; n_col <- 3000
A <- matrix(rnorm(n_row * n_col), n_row, n_col)
B <- A; dim(B) <- NULL

res <- benchmark(.Call('gpuQR_magma', A), .Call('gpuQR_cula', B, n_row, n_col), qr(A), columns = c('test', 'replications', 'elapsed', 'relative'), order = 'relative')

                                   test replications elapsed relative
2  .Call("gpuQR_cula", B, n_row, n_col)          100  18.704    1.000
1               .Call("gpuQR_magma", A)          100  70.461    3.767
3                                 qr(A)          100 985.411   52.685

MAGMAはculatoolsに比べて少し遅いようです(この例)。ただし、MAGMAにはメモリ不足の実装が付属しており、GPU メモリが 1Gb しかないことを考えると、これは非常に重要なことです。

于 2013-08-23T11:43:30.760 に答える