私は仕事関連の XML ベースの API を調査しました。これは倉庫データから来ています。理想的には、パンダを使用して Python で分析を行いたいと考えています。
Aggregate(aggregate_dimension_value_list=[ DateAggregateDimensionValue(value=datetime.datetime(2013, 8, 28, 19, 30, tzinfo= UTC )) , None, StringAggregateDimensionValue(value=u'VIRTUALLY_LABELED_CASE') ], quantity=127) ,
Aggregate(aggregate_dimension_value_list=[ DateAggregateDimensionValue(value=datetime.datetime(2013, 8, 28, 19, 30, tzinfo= UTC )) , StringAggregateDimensionValue(value=u'PPTransMergeNonCon') , StringAggregateDimensionValue(value=u'PRIME_BIN_RANDOM_STOW') ], quantity=15)
Aggregate(aggregate_dimension_value_list=[ DateAggregateDimensionValue(value=datetime.datetime(2013, 8, 27, 21, 0, tzinfo= UTC )) , StringAggregateDimensionValue(value=u'PPTransFRA1') , StringAggregateDimensionValue(value=u'PRIME_BIN_RANDOM_STOW') ], quantity=8) ,
VIMで検索と置換を行った後、データは上記のストリームのようになります(Pythonでこれをスクリプト化できることはわかっています)。この奇妙なフォーマットを Pandas に取り込むにはどうすればよいですか? 理想的には、日時、文字列の集計ディメンション値、および数量が必要です。しかし、この解析が必要なデータには、多くの None があります。データフレームでは、いくつかの分析を行うのは簡単ですが、私はここで少し困惑しています (そして、n00b のように感じます)。
編集:これは、取得して解析したい、正規表現されておらず、置換されていないデータです。実際には XML ではないため、XML は機能しません。
[<DateAggregateDimensionValue(value=datetime.datetime(2013, 8, 26, 20, 30, tzinfo=<UTC
>))>, <StringAggregateDimensionValue(value=u'PPTransCGN1')>, <
StringAggregateDimensionValue(value=u'PRIME_BIN_RANDOM_STOW')>], quantity=992)>, <
StringAggregateDimensionValue(value=u'PPTransLEJ1')>, <StringAggregateDimensionValue(
value=u'PRIME_BIN_RANDOM_STOW')>], quantity=945)>, <Aggregate(
aggregate_dimension_value_list=[<DateAggregateDimensionValue(value=datetime.datetime(2013
, 8, 23, 19, 30, tzinfo=<UTC>))>, None, <StringAggregateDimensionValue(value=u'TOTE')>],
quantity=87)>, <Aggregate(aggregate_dimension_value_list=[<DateAggregateDimensionValue(
value=datetime.datetime(2013, 8, 27, 17, 30, tzinfo=<UTC>))>, <
StringAggregateDimensionValue(value=u'PPTransMUC3')>, <StringAggregateDimensionValue(
value=u'TOTE')>], quantity=14)>, <Aggregate(aggregate_dimension_value_list=[<
DateAggregateDimensionValue(value=datetime.datetime(2013, 8, 27, 20, 30, tzinfo=<UTC
>))>, <StringAggregateDimensionValue(value=u'PPTransEUK5')>, <
StringAggregateDimensionValue(value=u'PRIME_BIN_RANDOM_STOW')>], quantity=339)>, <
Aggregate(aggregate_dimension_value_list=[<DateAggregateDimensionValue(value=datetime.
datetime(2013, 8, 26, 20, 30, tzinfo=<UTC>))>, <StringAggregateDimensionValue(value=u
'PPTransCGN1')>, <StringAggregateDimensionValue(value=u'TOTE')>], quantity=1731)>, <
Aggregate(aggregate_dimension_value_list=[<DateAggregateDimensionValue(value=datetime.
datetime(2013, 8, 26, 19, 30, tzinfo=<UTC>))>, <StringAggregateDimensionValue(value=u
'PPTransEUK5')>, quantity=444)>, <Aggregate(aggregate_dimension_value_list=[<
DateAggregateDimensionValue(value=datetime.datetime(2013, 8, 26, 19, 30, tzinfo=<UTC
>))>, <StringAggregateDimensionValue(value=u'PPTransEUK5')>, <
StringAggregateDimensionValue(value=u'TOTE')>], quantity=28)>, <Aggregate(
aggregate_dimension_value_list=[<DateAggregateDimensionValue(value=datetime.datetime(2013
, 8, 28, 19, 30, tzinfo=<UTC>))>, <StringAggregateDimensionValue(value=u'PPTransORY1')>,
<StringAggregateDimensionValue(value=u'PRIME_BIN_RANDOM_STOW')>], quantity=69)>, <
Aggregate(aggregate_dimension_value_list=<Aggregate(aggregate_dimension_value_list=[<
DateAggregateDimensionValue(value=datetime.datetime(2013, 8, 26, 19, 30, tzinfo=<UTC
>))>, <StringAggregateDimensionValue(value=u'PPTransMAD4')>, <
StringAggregateDimensionValue(value=u'PRIME_BIN_RANDOM_STOW')>], quantity=47)>, <
Aggregate(aggregate_dimension_value_list=[<DateAggregateDimensionValue(value=datetime.
datetime(2013, 8, 26, 21, 0, tzinfo=<UTC>))>, None, None], quantity=78)>