質問する
833 次
3 に答える
0
利用可能な座標のリストがソートされます。
したがって、リストとしても、現在までの最大の長方形をグローバルに持っています。
リスト ウォークを実行し、すべての項目に対して、その項目から始まるサブリストを使用して関数を呼び出します。そのアイテムの左上から始まる最大の長方形を見つける。
public List<Coord> getMaxRectangle(List<Coord> openCoords) {
List<Coord> currentMaxRectangle = null;
for (int i = 0; i < openCoords.size(); ++i) {
// Handle all rectangles starting here:
currentMaxRectangle = maxRectangleStartingAt(i, currentMaxRectangle);
}
return currentMaxRectangle;
}
public List<Coord> maxRectangleStartingAt(int i, List<Coord> openCoords) {
// Now the interesting part:
// Take the maximal width list first: standing for all widths 1, ... max width.
List<Coord> rect = new ArrayList<>();
for (int j = i; j < openCoords.size()
&& openCoords.get(j).y == openCoords.get(i).y
&& openCoords.get(j).x - openCoords.get(i).x == j - i;
++j) {
rect.add(openCoords.get(j);
}
int maxWidth = rect.size();
// Now we can look for next lines below rect.get(0), ... get(maxWidth - 1),
// continuously diminishing maxWidth till 0.
// When we need to diminish maxWidth, we can look wether the original
// maxWidth by (currentY - 1) is a maximum result.
...
}
だから私たちは歩きます:
+-------------+ 1st rect
| |
| | 2nd rect
| | 3rd rect
| | 4th rect
O(N²) の複雑さのデモンストレーション:
public static void main(String[] args) {
int[][] openCoords = {
{0, 2},
{1, 0},
{1, 1},
{1, 2},
{2, 0},
{2, 1}
};
new MaxRectFinder().find(openCoords);
}
private int[] maximumTopLeft;
private int[] maximumSize;
private void find(int[][] openCoords) {
maximumTopLeft = null;
maximumSize = new int[2];
for (int topLeftCandidateI = 0; topLeftCandidateI < openCoords.length; ++topLeftCandidateI) {
int yOrig = openCoords[topLeftCandidateI][0];
int xOrig = openCoords[topLeftCandidateI][1];
int y = yOrig;
int x = xOrig + 1;
int j = topLeftCandidateI + 1;
while (j < openCoords.length
&& openCoords[j][0] == y
&& openCoords[j][1] == x) {
++x;
++j;
}
// Now we have a maximum x.
for (;;) {
// Skip after right side on current line:
while (j < openCoords.length
&& openCoords[j][0] == y) {
++j;
}
++y;
// Check for maximum:
if (maximumTopLeft == null || (y - yOrig)*(x - xOrig) > maximumSize[0] * maximumSize[1]) {
maximumSize[0] = y - yOrig;
maximumSize[1] = x - xOrig;
maximumTopLeft = openCoords[topLeftCandidateI];
}
// Skip before left side below origin:
while (j < openCoords.length
&& openCoords[j][0] == y
&& openCoords[j][1] < x) {
++j;
}
if (j >= openCoords.length
|| openCoords[j][0] != y
|| openCoords[j][1] != x) {
break;
}
// Register rectangle part:
int x2 = xOrig;
while (j < openCoords.length
&& openCoords[j][0] == y
&& openCoords[j][1] == x2
&& x2 <= x) {
++x2;
++j;
}
x = x2;
}
}
if (maximumTopLeft == null) {
System.out.println("No solution found, not even 1x1.");
} else {
System.out.printf("At [%d, %d] with size [%d, %d].%n",
maximumTopLeft[0], maximumTopLeft[1], maximumSize[0], maximumSize[1]);
}
}
于 2013-08-29T17:00:02.540 に答える