プログラミングの演習として、バックトラッキング アルゴリズムを使用する数独ソルバーを書き終えました ( C で書かれた簡単な例については、ウィキペディアを参照してください)。
これをさらに一歩進めるために、Snow Leopard の GCD を使用してこれを並列化し、マシンのすべてのコアで実行できるようにしたいと考えています。これを行う方法と、どのようなコード変更を行う必要があるかについて、誰かが私に指針を与えることができますか? ありがとう!
マット
プログラミングの演習として、バックトラッキング アルゴリズムを使用する数独ソルバーを書き終えました ( C で書かれた簡単な例については、ウィキペディアを参照してください)。
これをさらに一歩進めるために、Snow Leopard の GCD を使用してこれを並列化し、マシンのすべてのコアで実行できるようにしたいと考えています。これを行う方法と、どのようなコード変更を行う必要があるかについて、誰かが私に指針を与えることができますか? ありがとう!
マット
使用してしまったら教えてください。ミルANSICで実行されるため、すべてで実行する必要があります。使用法については他の投稿を参照してください。
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
short sudoku[9][9];
unsigned long long cubeSolutions=0;
void* cubeValues[10];
const unsigned char oneLookup[64] = {0x8b, 0x80, 0, 0x80, 0, 0, 0, 0x80, 0, 0,0,0,0,0,0, 0x80, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0x80,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
int ifOne(int val) {
if ( oneLookup[(val-1) >> 3] & (1 << ((val-1) & 0x7)) )
return val;
return 0;
}
void init_sudoku() {
int i,j;
for (i=0; i<9; i++)
for (j=0; j<9; j++)
sudoku[i][j]=0x1ff;
}
void set_sudoku( char* initialValues) {
int i;
if ( strlen (initialValues) != 81 ) {
printf("Error: inputString should have length=81, length is %2.2d\n", strlen(initialValues) );
exit (-12);
}
for (i=0; i < 81; i++)
if ((initialValues[i] > 0x30) && (initialValues[i] <= 0x3a))
sudoku[i/9][i%9] = 1 << (initialValues[i] - 0x31) ;
}
void print_sudoku ( int style ) {
int i, j, k;
for (i=0; i < 9; i++) {
for (j=0; j < 9; j++) {
if ( ifOne(sudoku[i][j]) || !style) {
for (k=0; k < 9; k++)
if (sudoku[i][j] & 1<<k)
printf("%d", k+1);
} else
printf("*");
if ( !((j+1)%3) )
printf("\t");
else
printf(",");
}
printf("\n");
if (!((i+1) % 3) )
printf("\n");
}
}
void print_HTML_sudoku () {
int i, j, k, l, m;
printf("<TABLE>\n");
for (i=0; i<3; i++) {
printf(" <TR>\n");
for (j=0; j<3; j++) {
printf(" <TD><TABLE>\n");
for (l=0; l<3; l++) { printf(" <TR>"); for (m=0; m<3; m++) { printf("<TD>"); for (k=0; k < 9; k++) { if (sudoku[i*3+l][j*3+m] & 1<<k)
printf("%d", k+1);
}
printf("</TD>");
}
printf("</TR>\n");
}
printf(" </TABLE></TD>\n");
}
printf(" </TR>\n");
}
printf("</TABLE>");
}
int doRow () {
int count=0, new_value, row_value, i, j;
for (i=0; i<9; i++) {
row_value=0x1ff;
for (j=0; j<9; j++)
row_value&=~ifOne(sudoku[i][j]);
for (j=0; j<9; j++) {
new_value=sudoku[i][j] & row_value;
if (new_value && (new_value != sudoku[i][j]) ) {
count++;
sudoku[i][j] = new_value;
}
}
}
return count;
}
int doCol () {
int count=0, new_value, col_value, i, j;
for (i=0; i<9; i++) {
col_value=0x1ff;
for (j=0; j<9; j++)
col_value&=~ifOne(sudoku[j][i]);
for (j=0; j<9; j++) {
new_value=sudoku[j][i] & col_value;
if (new_value && (new_value != sudoku[j][i]) ) {
count++;
sudoku[j][i] = new_value;
}
}
}
return count;
}
int doCube () {
int count=0, new_value, cube_value, i, j, l, m;
for (i=0; i<3; i++)
for (j=0; j<3; j++) {
cube_value=0x1ff;
for (l=0; l<3; l++)
for (m=0; m<3; m++)
cube_value&=~ifOne(sudoku[i*3+l][j*3+m]);
for (l=0; l<3; l++)
for (m=0; m<3; m++) {
new_value=sudoku[i*3+l][j*3+m] & cube_value;
if (new_value && (new_value != sudoku[i*3+l][j*3+m]) ) {
count++;
sudoku[i*3+l][j*3+m] = new_value;
}
}
}
return count;
}
#define FALSE -1
#define TRUE 1
#define INCOMPLETE 0
int validCube () {
int i, j, l, m, r, c;
int pigeon;
int solved=TRUE;
//check horizontal
for (i=0; i<9; i++) {
pigeon=0;
for (j=0; j<9; j++)
if (ifOne(sudoku[i][j])) {
if (pigeon & sudoku[i][j]) return FALSE;
pigeon |= sudoku[i][j];
} else {
solved=INCOMPLETE;
}
}
//check vertical
for (i=0; i<9; i++) {
pigeon=0;
for (j=0; j<9; j++)
if (ifOne(sudoku[j][i])) {
if (pigeon & sudoku[j][i]) return FALSE;
pigeon |= sudoku[j][i];
}
else {
solved=INCOMPLETE;
}
}
//check cube
for (i=0; i<3; i++)
for (j=0; j<3; j++) {
pigeon=0;
r=j*3; c=i*3;
for (l=0; l<3; l++)
for (m=0; m<3; m++)
if (ifOne(sudoku[r+l][c+m])) {
if (pigeon & sudoku[r+l][c+m]) return FALSE;
pigeon |= sudoku[r+l][c+m];
}
else {
solved=INCOMPLETE;
}
}
return solved;
}
int solveSudoku(int position ) {
int status, i, k;
short oldCube[9][9];
for (i=position; i < 81; i++) {
while ( doCube() + doRow() + doCol() );
status = validCube() ;
if ((status == TRUE) || (status == FALSE))
return status;
if ((status == INCOMPLETE) && !ifOne(sudoku[i/9][i%9]) ) {
memcpy( &oldCube, &sudoku, sizeof(short) * 81) ;
for (k=0; k < 9; k++) {
if ( sudoku[i/9][i%9] & (1<<k) ) {
sudoku[i/9][i%9] = 1 << k ;
if (solveSudoku(i+1) == TRUE ) {
/* return TRUE; */
/* Or look for entire set of solutions */
if (cubeSolutions < 10) {
cubeValues[cubeSolutions] = malloc ( sizeof(short) * 81 ) ;
memcpy( cubeValues[cubeSolutions], &sudoku, sizeof(short) * 81) ;
}
cubeSolutions++;
if ((cubeSolutions & 0x3ffff) == 0x3ffff ) {
printf ("cubeSolutions = %llx\n", cubeSolutions+1 );
}
//if ( cubeSolutions > 10 )
// return TRUE;
}
memcpy( &sudoku, &oldCube, sizeof(short) * 81) ;
}
if (k==8)
return FALSE;
}
}
}
return FALSE;
}
int main ( int argc, char** argv) {
int i;
if (argc != 2) {
printf("Error: number of arguments on command line is incorrect\n");
exit (-12);
}
init_sudoku();
set_sudoku(argv[1]);
printf("[----------------------- Input Data ------------------------]\n\n");
print_sudoku(1);
solveSudoku(0);
if ((validCube()==1) && !cubeSolutions) {
// If sudoku is effectively already solved, cubeSolutions will not be set
printf ("\n This is a trivial sudoku. \n\n");
print_sudoku(1);
}
if (!cubeSolutions && validCube()!=1)
printf("Not Solvable\n");
if (cubeSolutions > 1) {
if (cubeSolutions >= 10)
printf("10+ Solutions, returning first 10 (%lld) [%llx] \n", cubeSolutions, cubeSolutions);
else
printf("%llx Solutions. \n", cubeSolutions);
}
for (i=0; (i < cubeSolutions) && (i < 10); i++) {
memcpy ( &sudoku, cubeValues[i], sizeof(short) * 81 );
printf("[----------------------- Solution %2.2d ------------------------]\n\n", i+1);
print_sudoku(0);
//print_HTML_sudoku();
}
return 0;
}
1 つには、バックトラッキングは深さ優先検索であるため、直接並列化することはできません。これは、新しく計算された結果を別のスレッドで直接使用することができないためです。代わりに、問題を早期に分割する必要があります。つまり、スレッド #1 は、バックトラッキング グラフ内のノードの最初の組み合わせから開始し、そのサブグラフの残りを検索します。スレッド #2 は、最初の組み合わせで 2 番目に可能な組み合わせから始まり、以降も同様です。つまり、n 個のスレッドの場合、検索スペースの最上位レベルでn 個の可能な組み合わせを見つけて (「前方追跡」しないでください)、これらのn 個の開始点をn 個のスレッドに割り当てます。
しかし、このアイデアには根本的な欠陥があると思います。多くの数独順列は、数千回のフォワード + バックトラッキングの手順で解決され、単一のスレッドで数ミリ秒以内に解決されます。実際、これは非常に高速であるため、マルチコア/マルチ CPU 上の少数のスレッド (n 個のスレッドが計算時間を元の時間の 1/n に短縮すると仮定) に必要なわずかな調整でさえ、総実行時間と比較して無視できません。、したがって、決してより効率的なソリューションではありません。
よろしいですか?たとえば、どのような問題を解決しようとしていますか? すべてのコアを使用する場合は、スレッドを使用してください。高速な数独ソルバーが必要な場合は、私が書いたものを提供できます。以下の出力を参照してください。自分で作業したい場合は、GCD を使用してください ;)。
更新:
GCD が悪いとは思いませんが、数独を解くタスクとはあまり関係がありません。GCD は GUI イベントをコードに結び付ける技術です。基本的に、GCD は 2 つの問題を解決します。MacOS X がウィンドウを更新する方法の癖であり、コードを GUI イベントに結び付ける (スレッドと比較して) 改善された方法を提供します。
数独は人が考えるよりもはるかに速く解決できるため、この問題には当てはまりません (私の謙虚な意見では)。そうは言っても、数独をより速く解くことが目標である場合は、複数のプロセッサを直接使用する必要があるため、スレッドを使用する必要があります。
[bear@bear scripts]$ time ./a.out ..1..4.......6.3.5...9.....8.....7.3.......285...7.6..3...8...6..92......4...1...
[----------------------- Input Data ------------------------]
*,*,1 *,*,4 *,*,*
*,*,* *,6,* 3,*,5
*,*,* 9,*,* *,*,*
8,*,* *,*,* 7,*,3
*,*,* *,*,* *,2,8
5,*,* *,7,* 6,*,*
3,*,* *,8,* *,*,6
*,*,9 2,*,* *,*,*
*,4,* *,*,1 *,*,*
[----------------------- Solution 01 ------------------------]
7,6,1 3,5,4 2,8,9
2,9,8 1,6,7 3,4,5
4,5,3 9,2,8 1,6,7
8,1,2 6,4,9 7,5,3
9,7,6 5,1,3 4,2,8
5,3,4 8,7,2 6,9,1
3,2,7 4,8,5 9,1,6
1,8,9 2,3,6 5,7,4
6,4,5 7,9,1 8,3,2
real 0m0.044s
user 0m0.041s
sys 0m0.001s