16

値の大きなデータベースを頻繁にハッシュする必要があります。したがって、SHA-2 ハッシャーの高速な実装が必要です。現在SHA256を使用しています。

私が現在使用している sha256_transform アルゴリズムは次のとおりです: http://bradconte.com/sha256_c (以下のコード)

コードのプロファイリングを行ったところ、このスニペットはハッシュあたりの計算時間のちょうど 96% を占めており、この関数が私の目標にとって重要になっています。

という名前の 64 バイト長のバイナリ文字列を操作しdata[]、結果を に出力しctx->stateます。

この関数のより高速なバージョンをお願いします。わずかな変更でも速度に悪影響を与える可能性があることに注意してください。

#define uchar unsigned char
#define uint unsigned int

#define ROTLEFT(a,b) (((a) << (b)) | ((a) >> (32-(b))))
#define ROTRIGHT(a,b) (((a) >> (b)) | ((a) << (32-(b))))

#define CH(x,y,z) (((x) & (y)) ^ (~(x) & (z)))
#define MAJ(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
#define EP0(x) (ROTRIGHT(x,2) ^ ROTRIGHT(x,13) ^ ROTRIGHT(x,22))
#define EP1(x) (ROTRIGHT(x,6) ^ ROTRIGHT(x,11) ^ ROTRIGHT(x,25))
#define SIG0(x) (ROTRIGHT(x,7) ^ ROTRIGHT(x,18) ^ ((x) >> 3))
#define SIG1(x) (ROTRIGHT(x,17) ^ ROTRIGHT(x,19) ^ ((x) >> 10))

void sha256_transform(SHA256_CTX *ctx, uchar data[]) {
    uint a,b,c,d,e,f,g,h,i,j,t1,t2,m[64];

    a = ctx->state[0];
    b = ctx->state[1];
    c = ctx->state[2];
    d = ctx->state[3];
    e = ctx->state[4];
    f = ctx->state[5];
    g = ctx->state[6];
    h = ctx->state[7];

    for (i=0,j=0; i < 16; i++, j += 4)
        m[i] = (data[j] << 24) | (data[j+1] << 16) | (data[j+2] << 8) | (data[j+3]);

    for ( ; i < 64; i++)
        m[i] = SIG1(m[i-2]) + m[i-7] + SIG0(m[i-15]) + m[i-16];

    for (i = 0; i < 64; ++i) {
        t1 = h + EP1(e) + CH(e,f,g) + k[i] + m[i];
        t2 = EP0(a) + MAJ(a,b,c);
        h = g;
        g = f;
        f = e;
        e = d + t1;
        d = c;
        c = b;
        b = a;
        a = t1 + t2;
    }

    ctx->state[0] += a;
    ctx->state[1] += b;
    ctx->state[2] += c;
    ctx->state[3] += d;
    ctx->state[4] += e;
    ctx->state[5] += f;
    ctx->state[6] += g;
    ctx->state[7] += h;
}
4

4 に答える 4

11

このSHA256 の実装をチェックアウト/プロファイルすることができます。

cgminer (人気のあるビットコイン マイニング ソフトウェア) で使用されているため、特にパフォーマンスを考慮して作成されています。SSE2 を使用した 4 方向の SIMD 実装が含まれています。質問で言及されている bradconte sha256_transform アルゴリズムと同じアプローチに従います。ここで再現するにはコードが長すぎます。

また、ライセンスはかなり寛大で、元の作成者が認定されている限り、再利用/配布が許可されています.

于 2013-08-31T11:00:27.340 に答える
7

C での SHA256 パフォーマンスの最適化 ...

Goldmont マイクロアーキテクチャがリリースされたので、これには Intel の SHA 拡張機能が含まれています。CPU 命令を使用すると、compress 関数で 5 倍から 6 倍のスピードアップを得ることができます。たとえば、暗号化ライブラリの提案されたコードは、次のことを証明しました (テストは、1.5 GHz で動作するが 2.3 GHz でバーストするCeleron J3455で行われました)。

  • C++ 実装
    $ ./botan speed --msec=3000 SHA-1 SHA-224 SHA-256
    SHA-160 [base] hash 274.826 MiB/sec (824.480 MiB in 3000.009 ms)
    SHA-224 [base] hash 92.349 MiB/sec (277.051 MiB in 3000.027 ms)
    SHA-256 [base] hash 92.364 MiB/sec (277.094 MiB in 3000.027 ms)
  • Intel SHA 拡張機能
    $ ./botan speed --msec=3000 SHA-1 SHA-224 SHA-256
    SHA-160 [base] hash 1195.907 MiB/sec (3587.723 MiB in 3000.000 ms)
    SHA-224 [base] hash 535.740 MiB/sec (1607.219 MiB in 3000.000 ms)
    SHA-256 [base] hash 535.970 MiB/sec (1607.914 MiB in 3000.005 ms)

Intel SHA 拡張機能と組み込み関数を使用した SHA256 圧縮関数のコードを次に示します。Intel® SHA Extensionsでの Sean Gulley のブログと、 mitls内の彼のサンプル コードに基づいています。hacl スター | 実験的

以下のcompress関数は、64 バイトの完全なブロックのみを処理します。初期状態をセットアップする必要があり、最後のブロックをパディングする必要があります。サンプルコードでカバーされているようです。

#include <immintrin.h>
...

void compress(uint32_t state[8], const uint8_t input[], size_t blocks)
{
    __m128i STATE0, STATE1;
    __m128i MSG, TMP, MASK;
    __m128i TMSG0, TMSG1, TMSG2, TMSG3;
    __m128i ABEF_SAVE, CDGH_SAVE;

    // Load initial values
    TMP = _mm_loadu_si128((__m128i*) &state[0]);
    STATE1 = _mm_loadu_si128((__m128i*) &state[4]);
    MASK = _mm_set_epi64x(0x0c0d0e0f08090a0bULL, 0x0405060700010203ULL);

    TMP = _mm_shuffle_epi32(TMP, 0xB1); // CDAB
    STATE1 = _mm_shuffle_epi32(STATE1, 0x1B); // EFGH
    STATE0 = _mm_alignr_epi8(TMP, STATE1, 8); // ABEF
    STATE1 = _mm_blend_epi16(STATE1, TMP, 0xF0); // CDGH

    while (blocks)
    {
        // Save current hash
        ABEF_SAVE = STATE0;
        CDGH_SAVE = STATE1;

        // Rounds 0-3
        MSG = _mm_loadu_si128((const __m128i*) (input+0));
        TMSG0 = _mm_shuffle_epi8(MSG, MASK);
        MSG = _mm_add_epi32(TMSG0, _mm_set_epi64x(0xE9B5DBA5B5C0FBCFULL, 0x71374491428A2F98ULL));
        STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
        MSG = _mm_shuffle_epi32(MSG, 0x0E);
        STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);

        // Rounds 4-7
        TMSG1 = _mm_loadu_si128((const __m128i*) (input+16));
        TMSG1 = _mm_shuffle_epi8(TMSG1, MASK);
        MSG = _mm_add_epi32(TMSG1, _mm_set_epi64x(0xAB1C5ED5923F82A4ULL, 0x59F111F13956C25BULL));
        STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
        MSG = _mm_shuffle_epi32(MSG, 0x0E);
        STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
        TMSG0 = _mm_sha256msg1_epu32(TMSG0, TMSG1);

        // Rounds 8-11
        TMSG2 = _mm_loadu_si128((const __m128i*) (input+32));
        TMSG2 = _mm_shuffle_epi8(TMSG2, MASK);
        MSG = _mm_add_epi32(TMSG2, _mm_set_epi64x(0x550C7DC3243185BEULL, 0x12835B01D807AA98ULL));
        STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
        MSG = _mm_shuffle_epi32(MSG, 0x0E);
        STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
        TMSG1 = _mm_sha256msg1_epu32(TMSG1, TMSG2);

        // Rounds 12-15
        TMSG3 = _mm_loadu_si128((const __m128i*) (input+48));
        TMSG3 = _mm_shuffle_epi8(TMSG3, MASK);
        MSG = _mm_add_epi32(TMSG3, _mm_set_epi64x(0xC19BF1749BDC06A7ULL, 0x80DEB1FE72BE5D74ULL));
        STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
        TMP = _mm_alignr_epi8(TMSG3, TMSG2, 4);
        TMSG0 = _mm_add_epi32(TMSG0, TMP);
        TMSG0 = _mm_sha256msg2_epu32(TMSG0, TMSG3);
        MSG = _mm_shuffle_epi32(MSG, 0x0E);
        STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
        TMSG2 = _mm_sha256msg1_epu32(TMSG2, TMSG3);

        // Rounds 16-19
        MSG = _mm_add_epi32(TMSG0, _mm_set_epi64x(0x240CA1CC0FC19DC6ULL, 0xEFBE4786E49B69C1ULL));
        STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
        TMP = _mm_alignr_epi8(TMSG0, TMSG3, 4);
        TMSG1 = _mm_add_epi32(TMSG1, TMP);
        TMSG1 = _mm_sha256msg2_epu32(TMSG1, TMSG0);
        MSG = _mm_shuffle_epi32(MSG, 0x0E);
        STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
        TMSG3 = _mm_sha256msg1_epu32(TMSG3, TMSG0);

        // Rounds 20-23
        MSG = _mm_add_epi32(TMSG1, _mm_set_epi64x(0x76F988DA5CB0A9DCULL, 0x4A7484AA2DE92C6FULL));
        STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
        TMP = _mm_alignr_epi8(TMSG1, TMSG0, 4);
        TMSG2 = _mm_add_epi32(TMSG2, TMP);
        TMSG2 = _mm_sha256msg2_epu32(TMSG2, TMSG1);
        MSG = _mm_shuffle_epi32(MSG, 0x0E);
        STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
        TMSG0 = _mm_sha256msg1_epu32(TMSG0, TMSG1);

        // Rounds 24-27
        MSG = _mm_add_epi32(TMSG2, _mm_set_epi64x(0xBF597FC7B00327C8ULL, 0xA831C66D983E5152ULL));
        STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
        TMP = _mm_alignr_epi8(TMSG2, TMSG1, 4);
        TMSG3 = _mm_add_epi32(TMSG3, TMP);
        TMSG3 = _mm_sha256msg2_epu32(TMSG3, TMSG2);
        MSG = _mm_shuffle_epi32(MSG, 0x0E);
        STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
        TMSG1 = _mm_sha256msg1_epu32(TMSG1, TMSG2);

        // Rounds 28-31
        MSG = _mm_add_epi32(TMSG3, _mm_set_epi64x(0x1429296706CA6351ULL,  0xD5A79147C6E00BF3ULL));
        STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
        TMP = _mm_alignr_epi8(TMSG3, TMSG2, 4);
        TMSG0 = _mm_add_epi32(TMSG0, TMP);
        TMSG0 = _mm_sha256msg2_epu32(TMSG0, TMSG3);
        MSG = _mm_shuffle_epi32(MSG, 0x0E);
        STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
        TMSG2 = _mm_sha256msg1_epu32(TMSG2, TMSG3);

        // Rounds 32-35
        MSG = _mm_add_epi32(TMSG0, _mm_set_epi64x(0x53380D134D2C6DFCULL, 0x2E1B213827B70A85ULL));
        STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
        TMP = _mm_alignr_epi8(TMSG0, TMSG3, 4);
        TMSG1 = _mm_add_epi32(TMSG1, TMP);
        TMSG1 = _mm_sha256msg2_epu32(TMSG1, TMSG0);
        MSG = _mm_shuffle_epi32(MSG, 0x0E);
        STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
        TMSG3 = _mm_sha256msg1_epu32(TMSG3, TMSG0);

        // Rounds 36-39
        MSG = _mm_add_epi32(TMSG1, _mm_set_epi64x(0x92722C8581C2C92EULL, 0x766A0ABB650A7354ULL));
        STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
        TMP = _mm_alignr_epi8(TMSG1, TMSG0, 4);
        TMSG2 = _mm_add_epi32(TMSG2, TMP);
        TMSG2 = _mm_sha256msg2_epu32(TMSG2, TMSG1);
        MSG = _mm_shuffle_epi32(MSG, 0x0E);
        STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
        TMSG0 = _mm_sha256msg1_epu32(TMSG0, TMSG1);

        // Rounds 40-43
        MSG = _mm_add_epi32(TMSG2, _mm_set_epi64x(0xC76C51A3C24B8B70ULL, 0xA81A664BA2BFE8A1ULL));
        STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
        TMP = _mm_alignr_epi8(TMSG2, TMSG1, 4);
        TMSG3 = _mm_add_epi32(TMSG3, TMP);
        TMSG3 = _mm_sha256msg2_epu32(TMSG3, TMSG2);
        MSG = _mm_shuffle_epi32(MSG, 0x0E);
        STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
        TMSG1 = _mm_sha256msg1_epu32(TMSG1, TMSG2);

        // Rounds 44-47
        MSG = _mm_add_epi32(TMSG3, _mm_set_epi64x(0x106AA070F40E3585ULL, 0xD6990624D192E819ULL));
        STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
        TMP = _mm_alignr_epi8(TMSG3, TMSG2, 4);
        TMSG0 = _mm_add_epi32(TMSG0, TMP);
        TMSG0 = _mm_sha256msg2_epu32(TMSG0, TMSG3);
        MSG = _mm_shuffle_epi32(MSG, 0x0E);
        STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
        TMSG2 = _mm_sha256msg1_epu32(TMSG2, TMSG3);

        // Rounds 48-51
        MSG = _mm_add_epi32(TMSG0, _mm_set_epi64x(0x34B0BCB52748774CULL, 0x1E376C0819A4C116ULL));
        STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
        TMP = _mm_alignr_epi8(TMSG0, TMSG3, 4);
        TMSG1 = _mm_add_epi32(TMSG1, TMP);
        TMSG1 = _mm_sha256msg2_epu32(TMSG1, TMSG0);
        MSG = _mm_shuffle_epi32(MSG, 0x0E);
        STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
        TMSG3 = _mm_sha256msg1_epu32(TMSG3, TMSG0);

        // Rounds 52-55
        MSG = _mm_add_epi32(TMSG1, _mm_set_epi64x(0x682E6FF35B9CCA4FULL, 0x4ED8AA4A391C0CB3ULL));
        STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
        TMP = _mm_alignr_epi8(TMSG1, TMSG0, 4);
        TMSG2 = _mm_add_epi32(TMSG2, TMP);
        TMSG2 = _mm_sha256msg2_epu32(TMSG2, TMSG1);
        MSG = _mm_shuffle_epi32(MSG, 0x0E);
        STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);

        // Rounds 56-59
        MSG = _mm_add_epi32(TMSG2, _mm_set_epi64x(0x8CC7020884C87814ULL, 0x78A5636F748F82EEULL));
        STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
        TMP = _mm_alignr_epi8(TMSG2, TMSG1, 4);
        TMSG3 = _mm_add_epi32(TMSG3, TMP);
        TMSG3 = _mm_sha256msg2_epu32(TMSG3, TMSG2);
        MSG = _mm_shuffle_epi32(MSG, 0x0E);
        STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);

        // Rounds 60-63
        MSG = _mm_add_epi32(TMSG3, _mm_set_epi64x(0xC67178F2BEF9A3F7ULL, 0xA4506CEB90BEFFFAULL));
        STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
        MSG = _mm_shuffle_epi32(MSG, 0x0E);
        STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);

        // Add values back to state
        STATE0 = _mm_add_epi32(STATE0, ABEF_SAVE);
        STATE1 = _mm_add_epi32(STATE1, CDGH_SAVE);

        input += 64;
        blocks--;
    }

    TMP = _mm_shuffle_epi32(STATE0, 0x1B); // FEBA
    STATE1 = _mm_shuffle_epi32(STATE1, 0xB1); // DCHG
    STATE0 = _mm_blend_epi16(TMP, STATE1, 0xF0); // DCBA
    STATE1 = _mm_alignr_epi8(STATE1, TMP, 8); // ABEF

    // Save state
    _mm_storeu_si128((__m128i*) &state[0], STATE0);
    _mm_storeu_si128((__m128i*) &state[4], STATE1);
}

Noloader GitHub | Intel SHA 組み込み関数と ARMv8 SHA 組み込み関数の両方のソースを見つけることができます。SHA-組み込み関数。これらは C ソース ファイルであり、SHA-1、SHA-224、および SHA-256 の圧縮機能を提供します。組み込みベースの実装では、スループットが SHA-1 で約 3 倍から 4 倍、SHA-224 と SHA-256 で約 6 倍から 12 倍に向上します。

于 2017-01-05T21:30:41.937 に答える
6

更新 2

Intel の暗号プリミティブ用リファレンス ライブラリである Intel の ISA-L_crypto を実際に使用する必要があります。元の投稿は、ISA-L_crypto に吸収された Intel の古い参照コードへのリンクです。

以下の例を使用すると、私のラップトップはコアあたり最大4 GB/秒になります。

$ git clone http://github.com/01org/isa-l_crypto
$ cd isa-l_crypto
$ ./autogen.sh && ./configure
$ make -j 16
$ cd sha256_mb
$ gcc sha256_mb_vs_ossl_perf.c -march=native -O3 -Wall -I../include ../.libs/libisal_crypto.a -lcrypto
$ ./a.out
sha256_openssl_cold: runtime =     511833 usecs, bandwidth 640 MB in 0.5118 sec = 1311.15 MB/s
multibinary_sha256_cold: runtime =     172098 usecs, bandwidth 640 MB in 0.1721 sec = 3899.46 MB/s
Multi-buffer sha256 test complete 32 buffers of 1048576 B with 20 iterations
 multibinary_sha256_ossl_perf: Pass

元の投稿

これはインテルの参照実装です。

http://downloadmirror.intel.com/22357/eng/sha256_code_release_v2.zip

コードは次の場所で説明されています。

http://www.intel.com/content/www/us/en/intelligent-systems/intel-technology/sha-256-implementations-paper.html

haswell ベースの Xeon マイクロプロセッサ (E5-2650 v3) で約 350 MB/秒を取得します。アセンブリに実装され、Intel AES-NI を利用します。

古いアップデート:

SHA の最新の Intel リファレンス実装 (現在は ISA-L_crypto の一部) は次の場所にあります。

https://github.com/01org/isa-l_crypto/tree/master/sha256_mb

于 2015-01-26T20:30:55.800 に答える
0

Brian Gladman 博士の実装を確認してください - http://www.gladman.me.uk/。cgminer のものより約 15% 高速です。SSEを使わずにもっとうまくやれるとは思わない

于 2014-12-31T14:05:16.873 に答える