0

ニューラル ネットワークの使用に問題があります。簡単なことから始めました。線形活性化関数を使用して、1 つの非表示層 (1 つのニューロンを含む) で nntool を使用しました。出力についても、線形活性化関数を使用しました。X と Y をニューラル ネットワーク ツールに入力し、テスト セットで結果を取得しました。

それをmatlabの通常のリッジ関数と比較しました。

ニューラル ネットワーク 1 のパフォーマンスがリッジ関数よりもはるかに悪いことがわかりました。最初の理由は、私のターゲットが正の場合に、予測に負の値がたくさんあることです。リッジ回帰では約 800 の -ve 値が得られましたが、nn では約 5000 の -ve 値が得られたため、nntool の精度が完全に台無しになりました。

nntool は線形回帰の実行に使用できるのに、どうして nntool はリッジ回帰ほどうまくいかないのでしょうか?

負の値の背後にある理由と、正の値を強制する方法は何ですか?

これが私がネットワークを訓練するために使用するものです

targets = dayofyear_targets(:, i+1);
net = newfit(train_data', targets', 5);
net.performFcn = 'mae';
net.layers{2}.transferFcn = 'purelin';
net.trainParam.max_fail = 10;
net.layers{1}.transferFcn = 'tansig';
net = train(net, train_data', targets');
results{n}(:, i) = sim(net, train_data')

これが私のデータへのリンクですhttps://www.dropbox.com/s/0wcj2y6x6jd2vzm/data.mat

ターゲットの最大値 = 31347900 ターゲットの最小値 = 12000 ターゲットの標準 = 7.8696e+06 ターゲットの平均 = 1.6877e+07

入力データの平均 (すべての機能) = 0

Max of input features = 318.547660595906    170.087177689426    223.932169893425    168.036356568791    123.552142071032    119.203127702922    104.835054133360    103.991193950830    114.185533613098    89.9463148033190    146.239919217723    87.4695246220901    54.0670595471470    138.770752686700    206.797850609643    66.1464335873203    74.2115064643667    57.5743248336263    34.9080123850414    51.0189601377110    28.2306033402457    59.0128127003956    109.067637217394    307.093253638216    103.049923948310    62.8146642809675    200.015259541953    116.661885835164    62.5567327185901    53.8264756204627    58.8389745246703    176.143066044763    109.758983758653    60.7299481351038    58.6442946860097    46.1757085114781    336.346653669636    188.317461118279    224.964813627679    131.036150096149    137.154788108331    101.660743039860    79.4118778807977    71.4376953724718    90.5561535067498    93.4577679861134    336.454999007931    188.478832826684    225.143399783080    131.129689699137    137.344882971079    101.735403131103    79.4552027696783    71.4625401815804    90.6415702940799    93.4391513416449    143.529912145748    139.846472255779    69.3652595100658    141.229186078884    142.169055101267    61.7542261599789    152.193483162673    142.600096412522    100.923921522930    117.430577166104    95.7956956529542    97.2020336095432    53.3982366051064    67.5119662506151    51.6323341924432    45.0561119607012    42.9378617679366    129.976361335597    142.673696349981    80.3147691198763    71.3756376053104    63.4368122986219    44.5956741629581    53.4495610863871    58.7095984295653    45.6460094353149    39.1823704174863

Min of input features = -20.4980450089652   -216.734809594199   -208.377002401333   -166.153721182481   -164.971591950319   -125.794572986012   -120.613947913087   -90.5034237473168   -134.579349373396   -83.3049591539539   -207.619242338228   -61.4759254872546   -53.9649370954913   -160.211101485606   -19.9518644140863   -71.7889519995308   -53.8121825067231   -63.5789507316766   -51.1490159556167   -45.3464904959582   -31.6240685853237   -44.3432050298007   -34.2568293807697   -266.636505655523   -146.890814672460   -74.1775783694521   -132.270950595716   -98.6307112885543   -74.9183852672982   -62.4830008457438   -50.9507510122653   -140.067268423566   -93.0276674484945   -46.0819928136273   -59.2773430879897   -42.5451478861616   -31.2745435717060   -167.227723082743   -165.559585876166   -111.610031207207   -115.227936838215   -114.221934636009   -100.253661816324   -92.8856877745228   -86.1818201082433   -70.8388921500665   -31.4414388158249   -167.300019804654   -165.623030944544   -111.652804647492   -115.385214399271   -114.284846572143   -100.330328846390   -93.0745562342156   -86.1595126080268   -70.9022836842639   -255.769604133190   -258.123896542916   -55.1273177937196   -254.950820371016   -237.808870530211   -48.7785774080310   -213.713286177228   -246.086347088813   -125.941623423708   -116.383806139418   -79.2526295146070   -73.5322630343671   -59.5627573635424   -59.8471670606059   -64.6956071579830   -44.2151862981818   -37.8399444185350   -165.171915536922   -61.7557905578095   -97.6861764054228   -48.1218110960853   -57.4061842741057   -55.2734701363017   -45.7001129953926   -46.0498982933589   -40.8981619566775   -38.8963700558353

std of input features = 32.6229352625809    23.9923892231470    20.2491752921310    17.7607289226108    16.0041198617605    14.0220141286592    12.5650595823472    11.8017618129464    11.3556667194196    10.5382275790401    79.9955119586915    23.4033030770963    13.6077112635514    70.2453437964039    20.5151528145556    16.0996176741868    14.1570158221881    12.9623353379168    10.9374477375002    8.96886512490408    8.14900837031189    7.08031665751228    6.91909266176659    78.5294157406654    29.1855289103841    17.8430919295327    76.8762213278391    26.2042738515736    17.0642403174281    14.5812208141282    11.0486273595910    76.5345079046264    27.0522533813606    15.3463708931398    14.6265102381665    11.1878734989856    39.6000366966711    26.1651093368473    23.0548487219797    17.7418206149244    16.6414818214387    13.3202865460648    12.3418432467697    11.6967799788894    10.8462000495929    10.4594143594862    39.5881760483459    26.1554037787439    23.0480628017814    17.7384413542873    16.6400399748141    13.3209601910848    12.3455390551215    11.6986154850079    10.8471011424912    10.4616180751664    84.5166510619818    84.2685711235292    17.6461724536770    84.5782246722891    84.1536835974735    15.4898443616888    84.4295575869672    59.7308251367612    27.7396138514949    24.5736295499757    18.5604346514449    15.5172516938784    12.5038199620381    11.8900580903921    10.7970958504272    9.68255544149509    8.96604859535919    61.8751159200641    22.9395284949373    20.3023241153997    18.6165218063180    13.5503823185794    12.1726984705006    11.1423398921756    9.54944172482809    8.81223325514952    7.92656384557323

サンプル数 = 5113

入力の次元 = 5113x83 出力の次元 = 5113x1

実際の目標 ここに画像の説明を入力

予測値 ここに画像の説明を入力

4

0 に答える 0