シュジャーさんに同意。データの範囲に基づいて、関数がどこに行くかを簡単に計算できます。上記のリンクを使用して、例を作成しました。
library(ggplot2)
df1 <- data.frame(x = c(1:100))
df1$y <- 2 + 3 * df1$x + rnorm(100, sd = 40)
df1$grp <- rep("Group 1",100)
df2 <- data.frame(x = c(1:100))
df2$y <- 10 -.5 * df2$x + rnorm(100, sd = 100)
df2$grp <- rep("Group 2",100)
df3 <- data.frame(x = c(1:100))
df3$y <- -5 + .2 * df3$x + rnorm(100, sd = 10)
df3$grp <- rep("Group 3",100)
df4 <- data.frame(x = c(1:100))
df4$y <- 2 - 3 * df4$x + rnorm(100, sd = 40)
df4$grp <- rep("Group 4",100)
df <- list(df1,df2,df3,df4)
lm_eqn = function(df) {
m = lm(y ~ x, df);
l <- list(a = format(coef(m)[1], digits = 2),
b = format(abs(coef(m)[2]), digits = 2),
r2 = format(summary(m)$r.squared, digits = 3));
if (coef(m)[2] >= 0) {
eq <- substitute(italic(y) == a + b %.% italic(x)*","~~italic(r)^2~"="~r2,l)
} else {
eq <- substitute(italic(y) == a - b %.% italic(x)*","~~italic(r)^2~"="~r2,l)
}
as.character(as.expression(eq));
}
pdf("I:/test.pdf")
for (i in 1:4) {
text.x <- ifelse(lm(df[[i]]$y~1+df[[i]]$x)$coef[2]>0,min(df[[i]]$x),max(df[[i]]$x))
text.y <- max(df[[i]]$y)
text.hjust <- ifelse(lm(df[[i]]$y~1+df[[i]]$x)$coef[2]>0,0,1)
p <- ggplot(data = df[[i]], aes(x = x, y = y)) +
geom_smooth(method = "lm", se=FALSE, color="black", formula = y ~ x) +
geom_point()
p1 = p + geom_text(aes(x = text.x, y = text.y, label = lm_eqn(df[[i]])), parse = TRUE,hjust=text.hjust)
print(p1)
}
dev.off()