解決策をまとめます。テストのデータ:
x1 <- as.list(as.data.frame(replicate(1000, 1:100)))
x2 <- as.list(as.data.frame(replicate(1000, sample(1:100, 100))))
ソリューション:
comp_list1 <- function(x) length(unique.default(x)) == 1L
comp_list2 <- function(x) all(vapply(x[-1], identical, logical(1L), x = x[[1]]))
comp_list3 <- function(x) all(vapply(x[-1], function(x2) all(x[[1]] == x2), logical(1L)))
comp_list4 <- function(x) sum(duplicated.default(x)) == length(x) - 1L
データのテスト:
for (i in 1:4) cat(match.fun(paste0("comp_list", i))(x1), " ")
#> TRUE TRUE TRUE TRUE
for (i in 1:4) cat(match.fun(paste0("comp_list", i))(x2), " ")
#> FALSE FALSE FALSE FALSE
ベンチマーク:
library(microbenchmark)
microbenchmark(comp_list1(x1), comp_list2(x1), comp_list3(x1), comp_list4(x1))
#> Unit: microseconds
#> expr min lq mean median uq max neval cld
#> comp_list1(x1) 138.327 148.5955 171.9481 162.013 188.9315 269.342 100 a
#> comp_list2(x1) 1023.932 1125.2210 1387.6268 1255.985 1403.1885 3458.597 100 b
#> comp_list3(x1) 1130.275 1275.9940 1511.7916 1378.789 1550.8240 3254.292 100 c
#> comp_list4(x1) 138.075 144.8635 169.7833 159.954 185.1515 298.282 100 a
microbenchmark(comp_list1(x2), comp_list2(x2), comp_list3(x2), comp_list4(x2))
#> Unit: microseconds
#> expr min lq mean median uq max neval cld
#> comp_list1(x2) 139.492 140.3540 147.7695 145.380 149.6495 218.800 100 a
#> comp_list2(x2) 995.373 1030.4325 1179.2274 1054.711 1136.5050 3763.506 100 b
#> comp_list3(x2) 977.805 1029.7310 1134.3650 1049.684 1086.0730 2846.592 100 b
#> comp_list4(x2) 135.516 136.4685 150.7185 139.030 146.7170 345.985 100 a
duplicated
およびunique
関数に基づく最も効率的なソリューションをご覧ください。