PS これは SO への私の最初のエントリです。何か間違ったことをしている場合はお知らせください。修正を試みます。私はこのアルゴリズムの実装を修正するためにほぼ 1 日を費やしました。
私が現在受講しているクラスでは、3 つの実質的に異なる言語で同じ二分探索アルゴリズムの 3 つの実装を求めています。そのうちの 1 つについて、私は苦労して Erlang を試してみることにしました。これが私のコードです:
-export(main/1).
main(_) ->
io:format("Running trials... ~n", []),
N = [2 bsl (2 * X + 6) || X <- lists:seq(0, 7)],
lists:foreach(fun(X) -> io:format("~p: ~p ~n", [X, time_search(X)]) end, N).
time_search(Size) ->
A = list_to_tuple(create_list(Size)),
Iterations = 2000000,
time_search(A, Size + 1, 0, Iterations) / Iterations.
time_search(_, _, Sum, 0) -> Sum;
time_search(A, Key, Sum, IterationNum) ->
Before = now(),
bin_search(A, Key),
time_search(A, Key, Sum + timer:now_diff(now(), Before), IterationNum - 1).
create_list(Size) -> lists:seq(1, Size).
bin_search(A, Key) -> bin_search(A, Key, 1, tuple_size(A)).
bin_search(_, _, Lower, Upper) when Lower > Upper -> false;
bin_search(A, Key, Lower, Upper) ->
Mid = (Upper + Lower) div 2,
Item = element(Mid, A),
if
Key > Item -> bin_search(A, Key, Mid + 1, Upper);
Key < Item -> bin_search(A, Key, Lower, Mid - 1);
true -> true
end.
したがって、これは出力です:
128: 250.8094435 µs
512: 308.7264845 µs
2048: 368.5770285 µs
8192: 425.748134 µs
32768: 477.6267655 µs
131072: 533.340876 µs
524288: 601.023178 µs
2097152: 661.099404 µs
しかし、私の Ruby の実装と比較すると、明らかに O(lg n) から桁違いにずれています。
編集:わかりましたので、注文ではないかもしれません...かなり対数的ですが、それでも間違っているようです...
ルビー:
128: 10.4756 µs
512: 11.8172 µs
2048: 13.5328 µs
8192: 15.3139 µs
32768: 17.0915 µs
131072: 18.8721 µs
524288: 21.5237 µs
2097152: 21.7187 µs
以前はリストを使っていましたが、O(1) の取得時間がないことを知り、タプルに切り替えました。私の Erlang が非効率的に実行される原因は何ですか?
念のため、これが私のRuby実装です
def p5_BinarySearch
n = Array.new(8){ |i| 2 << (2 * i + 6) }
n.each { |x|
time = timeSearch x
puts "#{x}: #{time.round 4} µs"
}
end
def timeSearch(size)
values = createArray size
iterations = 2e7.to_int
totalTime = 0
iterations.times{
before = Time.now
binarySearch(values, size + 1)
totalTime += Time.now - before
}
totalTime * 1e7 / iterations
end
def createArray(size)
(1..size).to_a
end
def binarySearch(values, key, low = 0, high = values.length - 1)
return false if low > high
mid = (low + high) / 2
return binarySearch(values, key, mid + 1, high) if key > values[mid]
return binarySearch(values, key, low, mid - 1) if key < values[mid]
true
end
if __FILE__ == $0
puts "Running trials..."
p5_BinarySearch
end