2

ポイント間の空間相関を可能にする線形混合モデル (lmm) を作成しようとしています (各ポイントに緯度/経度があります)。ポイント間の大円距離に基づく空間相関を希望します。

このパッケージrampsには、「haversine」距離を計算する相関構造が含まれていますが、実装に問題があります。以前に他の相関構造 ( corGauscorExp) を使用しましたが、問題はありませんでした。corRGaus「haversine」メトリックを使用したものも同じ方法で実装できると想定しています。

関数を使用して、平面距離で計算された空間相関を持つ lmm を正常に作成できlmeます。

コマンドを使用して相関構造にエラーがありますが、大円距離を使用して計算された空間相関を持つ線形モデル (混合されていない) を作成することもできますgls

gls大円距離を持つ線形モデルにコマンドを使用しようとすると、次のエラーが発生します。

x = runif(20, 1,50)
y = runif(20, 1,50)
gls(x ~ y, cor = corRGaus(form = ~ x + y))

Generalized least squares fit by REML
 Model: x ~ y 
 Data: NULL 
Log-restricted-likelihood: -78.44925

Coefficients:
 (Intercept)            y 
24.762656602  0.007822469 

Correlation Structure: corRGaus
 Formula: ~x + y 
 Parameter estimate(s):
Error in attr(object, "fixed") && unconstrained : 
 invalid 'x' type in 'x && y'

データのサイズを大きくすると、メモリ割り当てエラーが発生します (まだ非常に小さなデータセットです)。

x = runif(100, 1, 50)
y = runif(100, 1, 50)
lat = runif(100, -90, 90)
long = runif(100, -180, 180)
gls(x ~ y, cor = corRGaus(form = ~ x + y))

Error in glsEstimate(glsSt, control = glsEstControl) : 
'Calloc' could not allocate memory (18446744073709551616 of 8 bytes)

lmeコマンドとパッケージのcorRGausを使用して混合モデルを実行しようとするとramps、次の結果が得られます。

x = runif(100, 1, 50)
y = runif(100, 1, 50)
LC = c(rep(1, 50) , rep(2, 50))
lat = runif(100, -90, 90)
long = runif(100, -180, 180)

lme(x ~ y,random = ~ y|LC, cor = corRGaus(form = ~ long + lat))

Error in `coef<-.corSpatial`(`*tmp*`, value = value[parMap[, i]]) : 
  NA/NaN/Inf in foreign function call (arg 1)
In addition: Warning messages:
1: In nlminb(c(coef(lmeSt)), function(lmePars) -logLik(lmeSt, lmePars),  :
  NA/NaN function evaluation
2: In nlminb(c(coef(lmeSt)), function(lmePars) -logLik(lmeSt, lmePars),  :
  NA/NaN function evaluation

この方法をどのように進めればよいかわかりません。「haversine」関数を使用してモデルを完成させたいのですが、実装に問題があります。パッケージに関する質問はどこにもrampsほとんどなく、実装もほとんど見たことがありません。どんな助けでも大歓迎です。

以前にパッケージを変更しようとしましたが、変更nlmeできませんでした。パッケージの使用を勧められたthisについて質問を投稿しました。ramps

Windows 8 コンピューターで R 3.0.0 を使用しています。

4

2 に答える 2

4

glsOK、これはさまざまな空間相関構造を in / nlmewith hasine distanceで実装するオプションです。

さまざまなcorSpatialタイプのクラスには、距離メトリックが与えられた場合に、空間共変量から相関行列を構築するための機構が既に用意されています。残念ながら、distは hasersine 距離を実装しておらず、空間共変量から距離行列を計算するためにdistによって呼び出される関数です。corSpatial

距離行列の計算は で実行されgetCovariate.corSpatialます。このメソッドの修正された形式は、適切な距離を他のメソッドに渡します。メソッドの大部分は修正する必要はありません。

ここでは、新しいcorStructクラスを作成し、使用する相関関数を決定する1 つの他のメソッド ( )corHaversineのみを変更します。変更を必要としないメソッドは、同等のメソッドからコピーされます。の (新しい)引数は、対象の相関関数を持つ空間クラスの名前をとります。デフォルトでは、これは " " に設定されています。getCovariateDimcorSpatialmimiccorHaversinecorSpher

警告: このコードが球面相関関数とガウス相関関数に対して実行されることを確認する以外に、実際には多くのチェックを行っていません。

#### corHaversine - spatial correlation with haversine distance

# Calculates the geodesic distance between two points specified by radian latitude/longitude using Haversine formula.
# output in km
haversine <- function(x0, x1, y0, y1) {
    a <- sin( (y1 - y0)/2 )^2 + cos(y0) * cos(y1) * sin( (x1 - x0)/2 )^2
    v <- 2 * asin( min(1, sqrt(a) ) )
    6371 * v
}

# function to compute geodesic haversine distance given two-column matrix of longitude/latitude
# input is assumed in form decimal degrees if radians = F
# note fields::rdist.earth is more efficient
haversineDist <- function(xy, radians = F) {
    if (ncol(xy) > 2) stop("Input must have two columns (longitude and latitude)")
    if (radians == F) xy <- xy * pi/180
    hMat <- matrix(NA, ncol = nrow(xy), nrow = nrow(xy))
    for (i in 1:nrow(xy) ) {
        for (j in i:nrow(xy) ) {
            hMat[j,i] <- haversine(xy[i,1], xy[j,1], xy[i,2], xy[j,2]) 
            }
        }
    as.dist(hMat)
}

## for most methods, machinery from corSpatial will work without modification
Initialize.corHaversine <- nlme:::Initialize.corSpatial
recalc.corHaversine <- nlme:::recalc.corSpatial
Variogram.corHaversine <- nlme:::Variogram.corSpatial
corFactor.corHaversine <- nlme:::corFactor.corSpatial
corMatrix.corHaversine <- nlme:::corMatrix.corSpatial
coef.corHaversine <- nlme:::coef.corSpatial
"coef<-.corHaversine" <- nlme:::"coef<-.corSpatial"

## Constructor for the corHaversine class
corHaversine <- function(value = numeric(0), form = ~ 1, mimic = "corSpher", nugget = FALSE, fixed = FALSE) {
    spClass <- "corHaversine"
    attr(value, "formula") <- form
    attr(value, "nugget") <- nugget
    attr(value, "fixed") <- fixed
    attr(value, "function") <- mimic
    class(value) <- c(spClass, "corStruct")
    value
}   # end corHaversine class
environment(corHaversine) <- asNamespace("nlme")

Dim.corHaversine <- function(object, groups, ...) {
    if (missing(groups)) return(attr(object, "Dim"))
    val <- Dim.corStruct(object, groups)
    val[["start"]] <- c(0, cumsum(val[["len"]] * (val[["len"]] - 1)/2)[-val[["M"]]])
    ## will use third component of Dim list for spClass
    names(val)[3] <- "spClass"
    val[[3]] <- match(attr(object, "function"), c("corSpher", "corExp", "corGaus", "corLin", "corRatio"), 0)
    val
}
environment(Dim.corHaversine) <- asNamespace("nlme")


## getCovariate method for corHaversine class
getCovariate.corHaversine <- function(object, form = formula(object), data) {
    if (is.null(covar <- attr(object, "covariate"))) {          # if object lacks covariate attribute
        if (missing(data)) {                                    # if object lacks data
            stop("need data to calculate covariate")
            }
        covForm <- getCovariateFormula(form)
        if (length(all.vars(covForm)) > 0) {                    # if covariate present
            if (attr(terms(covForm), "intercept") == 1) {       # if formula includes intercept
                covForm <- eval(parse(text = paste("~", deparse(covForm[[2]]),"-1",sep="")))    # remove intercept
                }
            # can only take covariates with correct names
            if (length(all.vars(covForm)) > 2) stop("corHaversine can only take two covariates, 'lon' and 'lat'")
            if ( !all(all.vars(covForm) %in% c("lon", "lat")) ) stop("covariates must be named 'lon' and 'lat'")
            covar <- as.data.frame(unclass(model.matrix(covForm, model.frame(covForm, data, drop.unused.levels = TRUE) ) ) )
            covar <- covar[,order(colnames(covar), decreasing = T)] # order as lon ... lat
            }
        else {
            covar <- NULL
            }

        if (!is.null(getGroupsFormula(form))) {                 # if groups in formula extract covar by groups
            grps <- getGroups(object, data = data)
            if (is.null(covar)) {
                covar <- lapply(split(grps, grps), function(x) as.vector(dist(1:length(x) ) ) )     # filler?
                } 
            else {
                giveDist <- function(el) {
                    el <- as.matrix(el)
                    if (nrow(el) > 1) as.vector(haversineDist(el))                       
                    else numeric(0)
                    }
                covar <- lapply(split(covar, grps), giveDist )
                }
            covar <- covar[sapply(covar, length) > 0]  # no 1-obs groups
            } 
        else {                                  # if no groups in formula extract distance
            if (is.null(covar)) {
                covar <- as.vector(dist(1:nrow(data) ) )
                } 
            else {
                covar <- as.vector(haversineDist(as.matrix(covar) ) )
                }
            }
        if (any(unlist(covar) == 0)) {          # check that no distances are zero
            stop("cannot have zero distances in \"corHaversine\"")
            }
        }
    covar
    }   # end method getCovariate
environment(getCovariate.corHaversine) <- asNamespace("nlme")

1000 の範囲パラメーターを指定して、これが実行されることをテストするには、次のようにします。

## test that corHaversine runs with spherical correlation (not testing that it WORKS ...)
library(MASS)
set.seed(1001)
sample_data <- data.frame(lon = -121:-22, lat = -50:49)
ran <- 1000 # 'range' parameter for spherical correlation
dist_matrix <- as.matrix(haversineDist(sample_data))    # haversine distance matrix
# set up correlation matrix of response
corr_matrix <- 1-1.5*(dist_matrix/ran)+0.5*(dist_matrix/ran)^3
corr_matrix[dist_matrix > ran] = 0
diag(corr_matrix) <- 1
# set up covariance matrix of response
sigma <- 2  # residual standard deviation
cov_matrix <- (diag(100)*sigma) %*% corr_matrix %*% (diag(100)*sigma)   # correlated response
# generate response
sample_data$y <- mvrnorm(1, mu = rep(0, 100), Sigma = cov_matrix)

# fit model
gls_haversine <- gls(y ~ 1, correlation = corHaversine(form=~lon+lat, mimic="corSpher"), data = sample_data)
summary(gls_haversine)

# Correlation Structure: corHaversine
# Formula: ~lon + lat 
# Parameter estimate(s):
#    range 
# 1426.818 
#
# Coefficients:
#                 Value Std.Error  t-value p-value
# (Intercept) 0.9397666 0.7471089 1.257871  0.2114
#
# Standardized residuals:
#        Min         Q1        Med         Q3        Max 
# -2.1467696 -0.4140958  0.1376988  0.5484481  1.9240042 
#
# Residual standard error: 2.735971 
# Degrees of freedom: 100 total; 99 residual

範囲パラメーター = 100 のガウス相関で実行されることをテストします。

## test that corHaversine runs with Gaussian correlation
ran = 100  # parameter for Gaussian correlation
corr_matrix_gauss <- exp(-(dist_matrix/ran)^2)
diag(corr_matrix_gauss) <- 1
# set up covariance matrix of response
cov_matrix_gauss <- (diag(100)*sigma) %*% corr_matrix_gauss %*% (diag(100)*sigma)   # correlated response
# generate response
sample_data$y_gauss <- mvrnorm(1, mu = rep(0, 100), Sigma = cov_matrix_gauss)

# fit model
gls_haversine_gauss <- gls(y_gauss ~ 1, correlation = corHaversine(form=~lon+lat, mimic = "corGaus"), data = sample_data)
summary(gls_haversine_gauss)

lme:

## runs with lme
# set up data with group effects
group_y <- as.vector(sapply(1:5, function(.) mvrnorm(1, mu = rep(0, 100), Sigma = cov_matrix_gauss)))
group_effect <- rep(-2:2, each = 100)
group_y = group_y + group_effect
group_name <- factor(group_effect)
lme_dat <- data.frame(y = group_y, group = group_name, lon = sample_data$lon, lat = sample_data$lat)
# fit model
lme_haversine <- lme(y ~ 1, random = ~ 1|group, correlation = corHaversine(form=~lon+lat, mimic = "corGaus"), data = lme_dat, control=lmeControl(opt = "optim") )
summary(lme_haversine)

# Correlation Structure: corHaversine
#  Formula: ~lon + lat | group 
#  Parameter estimate(s):
#    range 
# 106.3482 
# Fixed effects: y ~ 1 
#                  Value Std.Error  DF     t-value p-value
# (Intercept) -0.0161861 0.6861328 495 -0.02359033  0.9812
#
# Standardized Within-Group Residuals:
#        Min         Q1        Med         Q3        Max 
# -3.0393708 -0.6469423  0.0348155  0.7132133  2.5921573 
#
# Number of Observations: 500
# Number of Groups: 5 
于 2013-09-25T19:18:53.590 に答える
0

R-Help のこの回答が役立つかどうかを確認してください: http://markmail.org/search/?q=list%3Aorg.r-project.r-help+winsemius+haversine#query:list%3Aorg.r-project。 r-help%20winsemius%20haversine+page:1+mid:ugecbw3jjwphu2pb+state:results

確認したところ、rampsまたはnlmeパッケージが Malcolm Fairbrother によって提案された変更を組み込むように変更されているようには見えないため、ハッキングを行う必要があります。私はテスト済みのソリューションを投稿しておらず、夢にも思っていなかったので、報奨金の対象になりたくありません。

于 2013-09-19T20:38:48.400 に答える