3

RGB 画像の 4 つの隣接 (上、下、左、右) ピクセルを検証するアルゴリズムを実装しようとしています。すべてのピクセル RGB 値が等しい場合、出力画像のピクセルを 1 としてマークします。それ以外の場合は、 0. ベクトル化されていない実装は次のとおりです。

def set_border_interior(img):
  img_rows = img.shape[0]
  img_cols = img.shape[1]
  res = np.zeros((img_rows,img_cols))
  for row in xrange(1,img_rows-1):
      for col in xrange(1,img_cols-1):
          data_b = set()
          data_g = set()
          data_r = set()
          up = row - 1
          down = row + 1
          left = col - 1
          right = col + 1

          data_b.add(img.item(row,col,0))
          data_g.add(img.item(row,col,1))
          data_r.add(img.item(row,col,2))

          data_b.add(img.item(up,col,0))
          data_g.add(img.item(up,col,1))
          data_r.add(img.item(up,col,2))

          data_b.add(img.item(down,col,0))
          data_g.add(img.item(down,col,1))
          data_r.add(img.item(down,col,2))

          data_b.add(img.item(row,left,0))
          data_g.add(img.item(row,left,1))
          data_r.add(img.item(row,left,2))

          data_b.add(img.item(row,right,0))
          data_g.add(img.item(row,right,1))
          data_r.add(img.item(row,right,2))

          if (len(data_b) == 1) and (len(data_g) == 1) and (len(data_r) == 1):
              res.itemset(row,col, False)
          else:
              res.itemset(row,col, True)
  return res

この非ベクトル化の方法ですが、非常に遅いです (img.item を使用してデータを読み取り、img.itemset を使用して新しい値を設定しても)。Numpy (または scipy) でこれを実装するより良い方法はありますか?

4

1 に答える 1

4

とにかく関数が適切に定義されていない境界線を脇に置いておくと、次のことができます。

import numpy as np
import matplotlib.pyplot as plt

rows, cols = 480, 640
rgb_img = np.zeros((rows, cols, 3), dtype=np.uint8)

rgb_img[:rows//2, :cols//2] = 255

center_slice = rgb_img[1:-1, 1:-1]
left_slice = rgb_img[1:-1, :-2]
right_slice = rgb_img[1:-1, 2:]
up_slice = rgb_img[:-2, 1:-1]
down_slice = rgb_img[2:, 1:-1]

all_equal = (np.all(center_slice == left_slice, axis=-1) &
             np.all(center_slice == right_slice, axis=-1) &
             np.all(center_slice == up_slice, axis=-1) &
             np.all(center_slice == down_slice, axis=-1))

plt.subplot(211)
plt.imshow(rgb_img, interpolation='nearest')
plt.subplot(212)
plt.imshow(all_equal, interpolation='nearest')
plt.show()

ここに画像の説明を入力

于 2013-09-20T17:52:00.910 に答える