数日前に質問をしましたが、少し複雑すぎたようで、回答が得られるとは思っていません。
私の問題は、分類に ANN を使用する必要があることです。私は、はるかに優れたコスト関数(または一部の本が指定する損失関数)がクロスエントロピーであることを読みましたJ(w) = -1/m * sum_i( yi*ln(hw(xi)) + (1-yi)*ln(1 - hw(xi)) )
。i
番号を示します。トレーニング マトリックスからのデータX
。MATLABに適用しようとしましたが、本当に難しいと思います。私が知らないことがいくつかあります:
- すべてのトレーニング データを指定して各出力を合計する必要があります (i = 1、... N、N はトレーニング用の入力の数)。
- 勾配は正しく計算されていますか
- 正しく計算された数値勾配 (gradAapprox) です。
次の MATLAB コードがあります。些細なことを尋ねるかもしれませんが、とにかく誰かが問題を見つける方法の手がかりを教えてくれることを願っています. 問題は勾配を計算することだと思います。
どうもありがとう。
メインスクリプト:
close all
clear all
L = @(x) (1 + exp(-x)).^(-1);
NN = @(x,theta) theta{2}*[ones(1,size(x,1));L(theta{1}*[ones(size(x,1),1) x]')];
% theta = [10 -30 -30];
x = [0 0; 0 1; 1 0; 1 1];
y = [0.9 0.1 0.1 0.1]';
theta0 = 2*rand(9,1)-1;
options = optimset('gradObj','on','Display','iter');
thetaVec = fminunc(@costFunction,theta0,options,x,y);
theta = cell(2,1);
theta{1} = reshape(thetaVec(1:6),[2 3]);
theta{2} = reshape(thetaVec(7:9),[1 3]);
NN(x,theta)'
コスト関数:
function [jVal,gradVal,gradApprox] = costFunction(thetaVec,x,y)
persistent index;
% 1 x x
% 1 x x
% 1 x x
% x = 1 x x
% 1 x x
% 1 x x
% 1 x x
m = size(x,1);
if isempty(index) || index > size(x,1)
index = 1;
end
L = @(x) (1 + exp(-x)).^(-1);
NN = @(x,theta) theta{2}*[ones(1,size(x,1));L(theta{1}*[ones(size(x,1),1) x]')];
theta = cell(2,1);
theta{1} = reshape(thetaVec(1:6),[2 3]);
theta{2} = reshape(thetaVec(7:9),[1 3]);
Dew = cell(2,1);
DewApprox = cell(2,1);
% Forward propagation
a0 = x(index,:)';
z1 = theta{1}*[1;a0];
a1 = L(z1);
z2 = theta{2}*[1;a1];
a2 = L(z2);
% Back propagation
d2 = 1/m*(a2 - y(index))*L(z2)*(1-L(z2));
Dew{2} = [1;a1]*d2;
d1 = [1;a1].*(1 - [1;a1]).*theta{2}'*d2;
Dew{1} = [1;a0]*d1(2:end)';
% NNRes = NN(x,theta)';
% jVal = -1/m*sum(NNRes-y)*NNRes*(1-NNRes);
jVal = -1/m*(a2 - y(index))*a2*(1-a2);
gradVal = [Dew{1}(:);Dew{2}(:)];
gradApprox = CalcGradApprox(0.0001);
index = index + 1;
function output = CalcGradApprox(epsilon)
output = zeros(size(gradVal));
for n=1:length(thetaVec)
thetaVecMin = thetaVec;
thetaVecMax = thetaVec;
thetaVecMin(n) = thetaVec(n) - epsilon;
thetaVecMax(n) = thetaVec(n) + epsilon;
thetaMin = cell(2,1);
thetaMax = cell(2,1);
thetaMin{1} = reshape(thetaVecMin(1:6),[2 3]);
thetaMin{2} = reshape(thetaVecMin(7:9),[1 3]);
thetaMax{1} = reshape(thetaVecMax(1:6),[2 3]);
thetaMax{2} = reshape(thetaVecMax(7:9),[1 3]);
a2min = NN(x(index,:),thetaMin)';
a2max = NN(x(index,:),thetaMax)';
jValMin = -1/m*(a2min-y(index))*a2min*(1-a2min);
jValMax = -1/m*(a2max-y(index))*a2max*(1-a2max);
output(n) = (jValMax - jValMin)/2/epsilon;
end
end
end
編集:以下に、興味のある人のために私の costFunction の正しいバージョンを示します。
function [jVal,gradVal,gradApprox] = costFunction(thetaVec,x,y)
m = size(x,1);
L = @(x) (1 + exp(-x)).^(-1);
NN = @(x,theta) L(theta{2}*[ones(1,size(x,1));L(theta{1}*[ones(size(x,1),1) x]')]);
theta = cell(2,1);
theta{1} = reshape(thetaVec(1:6),[2 3]);
theta{2} = reshape(thetaVec(7:9),[1 3]);
Delta = cell(2,1);
Delta{1} = zeros(size(theta{1}));
Delta{2} = zeros(size(theta{2}));
D = cell(2,1);
D{1} = zeros(size(theta{1}));
D{2} = zeros(size(theta{2}));
jVal = 0;
for in = 1:size(x,1)
% Forward propagation
a1 = [1;x(in,:)']; % added bias to a0
z2 = theta{1}*a1;
a2 = [1;L(z2)]; % added bias to a1
z3 = theta{2}*a2;
a3 = L(z3);
% Back propagation
d3 = a3 - y(in);
d2 = theta{2}'*d3.*a2.*(1 - a2);
Delta{2} = Delta{2} + d3*a2';
Delta{1} = Delta{1} + d2(2:end)*a1';
jVal = jVal + sum( y(in)*log(a3) + (1-y(in))*log(1-a3) );
end
D{1} = 1/m*Delta{1};
D{2} = 1/m*Delta{2};
jVal = -1/m*jVal;
gradVal = [D{1}(:);D{2}(:)];
gradApprox = CalcGradApprox(x(in,:),0.0001);
% Nested function to calculate gradApprox
function output = CalcGradApprox(x,epsilon)
output = zeros(size(thetaVec));
for n=1:length(thetaVec)
thetaVecMin = thetaVec;
thetaVecMax = thetaVec;
thetaVecMin(n) = thetaVec(n) - epsilon;
thetaVecMax(n) = thetaVec(n) + epsilon;
thetaMin = cell(2,1);
thetaMax = cell(2,1);
thetaMin{1} = reshape(thetaVecMin(1:6),[2 3]);
thetaMin{2} = reshape(thetaVecMin(7:9),[1 3]);
thetaMax{1} = reshape(thetaVecMax(1:6),[2 3]);
thetaMax{2} = reshape(thetaVecMax(7:9),[1 3]);
a3min = NN(x,thetaMin)';
a3max = NN(x,thetaMax)';
jValMin = 0;
jValMax = 0;
for inn=1:size(x,1)
jValMin = jValMin + sum( y(inn)*log(a3min) + (1-y(inn))*log(1-a3min) );
jValMax = jValMax + sum( y(inn)*log(a3max) + (1-y(inn))*log(1-a3max) );
end
jValMin = 1/m*jValMin;
jValMax = 1/m*jValMax;
output(n) = (jValMax - jValMin)/2/epsilon;
end
end
end