あなたと同じように、私はストリームラインと同じ種類のデータを視覚化したかったのですが、そのトリックを行う関数を見つけることができませんでした.
streamlines <- function(x, y, u, v, step.dist=NULL,
max.dist=NULL, col.ramp=c("white","black"),
fade.col=NULL, length=0.05, ...) {
## Function for adding smoothed vector lines to a plot.
## Interpolation powered by akima package
## step.distance - distance between interpolated locations (user coords)
## max.dist - maximum length of interpolated line (user coords)
## col.ramp - colours to be passed to colorRampPalette
## fade.col - NULL or colour to add fade effect to interpolated line
## ... - further arguments to pass to arrows
## build smoothed lines using interp function
maxiter <- max.dist/step.dist
l <- replicate(5, matrix(NA, length(x), maxiter), simplify=FALSE)
names(l) <- c("x","y","u","v","col")
l$x[,1] <- x
l$y[,1] <- y
l$u[,1] <- u
l$v[,1] <- v
for(i in seq(maxiter)[-1]) {
l$x[,i] <- l$x[,i-1]+(l$u[,i-1]*step.dist)
l$y[,i] <- l$y[,i-1]+(l$v[,i-1]*step.dist)
r <- which(l$x[,i]==l$x[,i-1] & l$y[,i]==l$y[,i-1])
l$x[r,i] <- NA
l$y[r,i] <- NA
for(j in seq(length(x))) {
if(!is.na(l$x[j,i])) {
l$u[j,i] <- c(interp(x, y, u, xo=l$x[j,i], yo=l$y[j,i])$z)
l$v[j,i] <- c(interp(x, y, v, xo=l$x[j,i], yo=l$y[j,i])$z)
}
}
}
## make colour a function of speed and fade line
spd <- sqrt(l$u^2 + l$v^2) # speed
spd <- apply(spd, 1, mean, na.rm=TRUE) # mean speed for each line
spd.int <- seq(min(spd, na.rm=TRUE), max(spd, na.rm=TRUE), length.out=maxiter)
cr <- colorRampPalette(col.ramp)
cols <- as.numeric(cut(spd, spd.int))
ncols <- max(cols, na.rm=TRUE)
cols <- cr(ncols)[cols]
if(is.null(fade.col)) {
l$col <- replicate(maxiter, cols)
} else {
nfade <- apply(!is.na(l$x), 1, sum)
for(j in seq(length(x))) {
l$col[j,seq(nfade[j])] <- colorRampPalette(c(fade.col, cols[j]))(nfade[j])
}
}
## draw arrows
for(j in seq(length(x))) {
arrows(l$x[j,], l$y[j,], c(l$x[j,-1], NA), c(l$y[j,-1], NA),
col=l$col[j,], length=0, ...)
i <- which.max(which(!is.na(l$x[j,]))) # draw arrow at end of line
if(i>1) {
arrows(l$x[j,i-1], l$y[j,i-1], l$x[j,i], l$y[j,i],
col=l$col[j,i-1], length=length, ...)
}
}
}
この関数は、akimaパッケージの interp 関数によって強化されており、少し手を加えれば、まともなビジュアルを生成できます。
dat <- "longitude,latitude,windspeed,winddirection
84.01,20,1.843478261,126.6521739
77.13,28.48,3.752380952,138.952381
77.2,28.68,2.413333333,140.2666667
78.16,31.32,1.994444444,185.0555556
77.112,31.531,2.492,149.96
77,28.11,7.6,103
77.09,31.5,1.752631579,214.8947368
76.57,31.43,1.28,193.6
77.02,32.34,3.881818182,264.4545455
77.15,28.7,2.444,146.12
77.35,30.55,3.663157895,131.3684211
75.5,29.52,4.175,169.75
72.43,24.17,2.095,279.3
76.19,25.1,1.816666667,170
76.517,30.975,1.284210526,125.6315789
76.13,28.8,4.995,126.7
75.04,29.54,4.09,151.85
72.3,24.32,0,359
72.13,23.86,1.961111111,284.7777778
74.95,30.19,3.032,137.32
73.16,22.36,1.37,251.8
75.84,30.78,3.604347826,125.8695652
73.52,21.86,1.816666667,228.9166667
70.44,21.5,2.076,274.08
69.75,21.36,3.81875,230
78.05,30.32,0.85625,138.5625"
tf <- tempfile()
writeLines(dat, tf)
dat <- read.csv(tf)
library(rgdal) # for projecting locations to utm coords
library(akima) # for interpolation
## add utm coords
xy <- as.data.frame(project(cbind(dat$longitude, dat$latitude), "+proj=utm +zone=43 +datum=NAD83"))
names(xy) <- c("easting","northing")
dat <- cbind(dat, xy)
## add u and v coords
dat$u <- -dat$windspeed*sin(dat$winddirection*pi/180)
dat$v <- -dat$windspeed*cos(dat$winddirection*pi/180)
#par(bg="black", fg="white", col.lab="white", col.axis="white")
plot(northing~easting, data=dat, type="n", xlab="Easting (m)", ylab="Northing (m)")
streamlines(dat$easting, dat$northing, dat$u, dat$v,
step.dist=1000, max.dist=50000, col.ramp=c("blue","green","yellow","red"),
fade.col="white", length=0, lwd=5)