4

凸包アルゴリズムの作業を開始しましたが、ポリゴンのエッジを滑らかにするためにどのような方法を採用できるか疑問に思っていました。船体の輪郭は滑らかではありません。私がやりたいのは、頂点を通る線をより滑らかにして、角度がつかないようにすることです。

ここに画像の説明を入力

ベジエ (形状が船体の形状とはまったく異なることに気付くためだけに) と b-スプライン (やはり形状は似ていませんでした。実際、b-スプラインを閉じた形状にすることはできませんでした) を実装しようとしました。

私は失敗していて、誰かがガイダンスを提供できることを願っています。

4

2 に答える 2

1

(注!それは解決策ではありません)

極座標のラグランジュ多項式として正確な解を見つけようとしましたが、「平滑化曲線」が凸多角形の内側にあることがあることがわかりました。theta in [0:2 * pi]一次導関数の一致条件 (開始点) は、間隔の外側に移動可能な非表示の点を追加することで基本的に解決できます。しかし、上記の問題はとにかく私の頭では解決できません。

これが私の試みによるLuaスクリプトです( qhullrboxqhullツールチェーンから)およびgnuplotユーティリティを使用):

function using()
    return error('using: ' .. arg[0] .. ' <number of points>')
end

function points_from_file(infile)
    local points = {}
    local infile = io.open(infile, 'r')
    local d = infile:read('*number')
    if d ~= 2 then
        error('dimensions is not two')
    end
    local n = infile:read('*number')
    while true do
        local x, y = infile:read('*number', '*number')
        if not x and not y then
            break
        end
        if not x or not y then
            error('wrong format of input file: line does not contain two coordinates')
        end
        table.insert(points, {x, y})
    end
    infile:close()
    if n ~= #points then
        error('second line not contain real count of points')
    end
    return points
end

if not arg then
    error("script should use as standalone")
end
if #arg ~= 1 then
    using()
end
local n = tonumber(arg[1])
if not n then
    using()
end
local bounding_box = math.sqrt(math.pi) / 2.0
local fnp = os.tmpname()
local fnchp = os.tmpname()
os.execute('rbox ' .. n .. ' B' .. bounding_box .. ' D2 n t | tee ' .. fnp .. ' | qhull p | tee ' .. fnchp .. ' > nul') -- Windows specific part is "> nul"
local sp = points_from_file(fnp) -- source points
os.remove(fnp)
local chp = points_from_file(fnchp) -- convex hull points
os.remove(fnchp)
local m = #chp
if m < 3 then
    io.stderr:write('convex hull consist of less than three points')
    return
end
local pole = {0.0, 0.0} -- offset of polar origin relative to cartesian origin
for _, point in ipairs(chp) do
    pole[1] = pole[1] + point[1]
    pole[2] = pole[2] + point[2]
end
pole[1] = pole[1] / m
pole[2] = pole[2] / m
print("pole = ", pole[1], pole[2])
local chcc = {}
for _, point in ipairs(chp) do
    table.insert(chcc, {point[1] - pole[1], point[2] - pole[2]})
end
local theta_min = 2.0 * math.pi -- angle between abscissa ort of cartesian and ort of polar coordinates
local rho_mean = 0.0
local rho_max = 0.0
local chpc = {} -- {theta, rho} pairs
for _, point in ipairs(chcc) do
    local rho = math.sqrt(point[1] * point[1] + point[2] * point[2])
    local theta = math.atan2(point[2], point[1])
    if theta < 0.0 then -- [-pi:pi] -> [0:2 * pi]
        theta = theta + 2.0 * math.pi
    end
    table.insert(chpc, {theta, rho})
    if theta_min > theta then
        theta_min = theta
    end
    rho_mean = rho_mean + rho
    if rho_max < rho then
        rho_max = rho
    end
end
theta_min = -theta_min
rho_mean = rho_mean / m
rho_max = rho_max / rho_mean
for pos, point in ipairs(chpc) do
    local theta = (point[1] + theta_min) / math.pi -- [0:2 * pi] -> [0:2]
    local rho = point[2] / rho_mean
    table.remove(chpc, pos)
    table.insert(chpc, pos, {theta, rho})
end
table.sort(chpc, function (lhs, rhs) return lhs[1] < rhs[1] end)
-- table.insert(chpc, {chpc[#chpc][1] - 2.0 * math.pi, chpc[#chpc][2]})
table.insert(chpc, {2.0, chpc[1][2]})
-- table.sort(chpc, function (lhs, rhs) return lhs[1] < rhs[1] end)

local solution = {}
solution.x = {}
solution.y = {}
for _, point in ipairs(chpc) do
    table.insert(solution.x, point[1])
    table.insert(solution.y, point[2])
end
solution.c = {}
for i, xi in ipairs(solution.x) do
    local c = solution.y[i]
    for j, xj in ipairs(solution.x) do
        if i ~= j then
            c = c / (xi - xj)
        end
    end
    solution.c[i] = c
end
function solution:monomial(i, x)
    local y = self.c[i]
    for j, xj in ipairs(solution.x) do
        if xj == x then
            if i == j then
                return self.y[i]
            else
                return 0.0
            end
        end
        if i ~= j then
            y = y * (x - xj)
        end
    end
    return y
end
function solution:polynomial(x)
    local y = self:monomial(1, x)
    for i = 2, #solution.y do
        y = y + self:monomial(i, x)
    end
    return y
end

local gnuplot = io.popen('gnuplot', 'w')

gnuplot:write('reset;\n')
gnuplot:write('set terminal wxt 1;\n')
gnuplot:write(string.format('set xrange [%f:%f];\n', -bounding_box, bounding_box))
gnuplot:write(string.format('set yrange [%f:%f];\n', -bounding_box, bounding_box))
gnuplot:write('set size square;\n')
gnuplot:write(string.format('set xtics %f;\n', 0.1))
gnuplot:write(string.format('set ytics %f;\n', 0.1))
gnuplot:write('set grid xtics ytics;\n')
gnuplot:write('plot "-" using 1:2 notitle with points, "-" using 1:2:3:4 notitle with vectors;\n')
for _, point in ipairs(sp) do
    gnuplot:write(string.format('%f %f\n', point[1], point[2]))
end
gnuplot:write('e\n')
for _, point in ipairs(chcc) do
    gnuplot:write(string.format('%f %f %f %f\n', pole[1], pole[2], point[1], point[2]))
end
gnuplot:write('e\n')
gnuplot:flush();

gnuplot:write('reset;\n')
gnuplot:write('set terminal wxt 2;\n')
gnuplot:write('set border 0;\n')
gnuplot:write('unset xtics;\n')
gnuplot:write('unset ytics;\n')
gnuplot:write('set polar;\n')
gnuplot:write('set grid polar;\n')
gnuplot:write('set trange [-pi:2 * pi];\n')
gnuplot:write(string.format('set rrange [-0:%f];\n', rho_max))
gnuplot:write('set size square;\n')
gnuplot:write('set view equal xy;\n')
-- gnuplot:write(string.format('set xlabel "%f";\n', rho_mean - 1.0))
gnuplot:write(string.format('set arrow 1 from 0,0 to %f,%f;\n', rho_max * math.cos(theta_min), rho_max * math.sin(theta_min)))
gnuplot:write(string.format('set label 1 " origin" at %f,%f left rotate by %f;\n', rho_max * math.cos(theta_min), rho_max * math.sin(theta_min), math.deg(theta_min)))
gnuplot:write('plot "-" using 1:2:3:4 notitle with vectors, "-" using 1:2 notitle with lines, "-" using 1:2 notitle with lines;\n')
for _, point in ipairs(chpc) do
    gnuplot:write(string.format('0 0 %f %f\n', point[1] * math.pi, point[2]))
end
gnuplot:write('e\n')
for _, point in ipairs(chpc) do
    gnuplot:write(string.format('%f %f\n', point[1] * math.pi, point[2]))
end
gnuplot:write('e\n')
do
    local points_count = 512
    local dx = 2.0 / points_count
    local x = 0.0
    for i = 1, points_count do
        gnuplot:write(string.format('%f %f\n', x * math.pi, solution:polynomial(x)))
        x = x + dx
    end
    gnuplot:write('e\n')
end
gnuplot:flush();

gnuplot:write('reset;\n')
gnuplot:write('set terminal wxt 3;\n')
gnuplot:write(string.format('set xrange [-1:2];\n'))
gnuplot:write(string.format('set yrange [0:2];\n'))
gnuplot:write(string.format('set size ratio %f;\n', rho_max / 3.0))
gnuplot:write(string.format('set xtics %f;\n', 0.5))
gnuplot:write(string.format('set ytics %f;\n', 0.5))
gnuplot:write('set grid xtics ytics;\n')
gnuplot:write(string.format('set arrow 1 nohead from 0,%f to 2,%f linetype 3;\n', chpc[1][2], chpc[1][2]))
gnuplot:write(string.format('set label 1 "glue points " at 0,%f right;\n', chpc[1][2]))
gnuplot:write('plot "-" using 1:2 notitle with lines, "-" using 1:2 notitle with lines;\n')
for _, point in ipairs(chpc) do
    gnuplot:write(string.format('%f %f\n', point[1], point[2]))
end
gnuplot:write('e\n')
do
    local points_count = 512
    local dx = 2.0 / points_count
    local x = 0.0
    for i = 1, points_count do
        gnuplot:write(string.format('%f %f\n', x, solution:polynomial(x)))
        x = x + dx
    end
    gnuplot:write('e\n')
end
gnuplot:flush();

os.execute('pause');
gnuplot:write('exit\n');
gnuplot:flush();
gnuplot:close()

2 番目の端子には、ラグランジュ多項式近似が含まれます。

于 2013-11-22T18:30:13.927 に答える