Nystroem 近似に scikit Learn を使用しています。主なコードは次のとおりです。
feature_map_fourier = RBFSampler(gamma=0.5, random_state=1)
feature_map_nystroem = Nystroem(gamma=0.5, random_state=1)
fourier_approx_svm = pipeline.Pipeline([("feature_map", feature_map_fourier),
("svm", svm.LinearSVC(C=4))])
nystroem_approx_svm = pipeline.Pipeline([("feature_map", feature_map_nystroem),
("svm", svm.LinearSVC(C=4))])
# fit and predict using linear and kernel svm:
sample_sizes = np.arange(1,20)
print sample_sizes
fourier_scores = []
nystroem_scores = []
fourier_times = []
nystroem_times = []
for D in sample_sizes:
avgtime = 0.0
avgscore = 0.0
avgftime = 0.0
avgfscore = 0.0
ns = []
fs = []
for i in range(0, 10):
feature_map_fourier = RBFSampler(gamma=0.5, random_state=i)
feature_map_nystroem = Nystroem(gamma=0.5, random_state=i)
fourier_approx_svm = pipeline.Pipeline([("feature_map", feature_map_fourier),
("svm", svm.LinearSVC(C=1))])
nystroem_approx_svm = pipeline.Pipeline([("feature_map", feature_map_nystroem),("svm", svm.LinearSVC(C=1))])
nystroem_approx_svm.set_params(feature_map__n_components=D)
nystroem_approx_svm.fit(data_train, targets_train)
fourier_approx_svm.set_params(feature_map__n_components=D)
fourier_approx_svm.fit(data_train, targets_train)
start = time()
fourier_score = fourier_approx_svm.score(data_test, targets_test)
t = time() - start
avgftime += t
avgfscore += fourier_score
start = time()
nystroem_score = nystroem_approx_svm.score(data_test, targets_test)
t = time() - start
avgtime += t
avgscore += nystroem_score
ns.append(avgscore)
fs.append(avgfscore)
print 'Nstrrom '+str(np.std(ns))
print 'fs '+str(np.std(ns))
nystroem_times.append(avgtime/10.0)
nystroem_scores.append(avgscore/10.0)
fourier_times.append(avgftime/10.0)
fourier_scores.append(avgfscore/10.0)
このコードを実行しようとすると、次のエラーが発生します。
C:\Users\t-sujain\Documents\LDKL BaseLine\Nystreom>forestNormalized_kernel_appro
x.py
522910
[ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19]
Traceback (most recent call last):
File "C:\Users\t-sujain\Documents\LDKL BaseLine\Nystreom\forestNormalized_kern
el_approx.py", line 70, in <module>
nystroem_approx_svm.fit(data_train, targets_train)
File "F:\Python27\lib\site-packages\sklearn\pipeline.py", line 126, in fit
Xt, fit_params = self._pre_transform(X, y, **fit_params)
File "F:\Python27\lib\site-packages\sklearn\pipeline.py", line 116, in _pre_tr
ansform
Xt = transform.fit_transform(Xt, y, **fit_params_steps[name])
File "F:\Python27\lib\site-packages\sklearn\base.py", line 364, in fit_transfo
rm
return self.fit(X, y, **fit_params).transform(X)
File "F:\Python27\lib\site-packages\sklearn\kernel_approximation.py", line 470
, in transform
gamma=self.gamma)
File "F:\Python27\lib\site-packages\sklearn\metrics\pairwise.py", line 808, in
pairwise_kernels
return func(X, Y, **kwds)
File "F:\Python27\lib\site-packages\sklearn\metrics\pairwise.py", line 345, in
rbf_kernel
K = euclidean_distances(X, Y, squared=True)
File "F:\Python27\lib\site-packages\sklearn\metrics\pairwise.py", line 148, in
euclidean_distances
XX = X.multiply(X).sum(axis=1)
File "F:\Python27\lib\site-packages\scipy\sparse\compressed.py", line 251, in
multiply
return self._binopt(other,'_elmul_')
File "F:\Python27\lib\site-packages\scipy\sparse\compressed.py", line 676, in
_binopt
data = np.empty(maxnnz, dtype=upcast(self.dtype,other.dtype))
MemoryError
私はcygbinと100GBのRAMを搭載したシステムを使用しているため、システムがメモリ不足になる可能性はありません. 誰かがこれで私を助けてくれますか?